ON MODULES OVER \((qa)\)-RINGS

By E.P. Armendariz

All rings considered will have a unit and modules will be unital left modules. In a recent paper [4], H. Harui has considered modules over commutative rings whose total quotient ring is Artinian, called \((qa)\)-rings. The purpose of this note is to extend two of the main results of his paper to non-commutative rings. Specifically, we show (Theorem 2.2) that for a ring \(R\) having a quasi-Frobenius quotient ring, if \(M\) is an \(h\)-divisible \(R\)-module such that \(M/l(M)\) is an injective \(R\)-module then \(l(M)\) is a direct summand of \(M\); this extends Theorem 2.10 of [4]. Moreover, extending Theorem 3.3 of [4], we show that if \(R\) is a ring with an Artinian quotient ring \(Q\), then \(Q\) is semisimple if and only if \(E(M)/M\) is a torsion \(R\)-module for all \(R\)-modules \(M\).

1. Preliminaries.

Our notation will be the same as that of [4]. Thus let \(S\) denote the set of non-zero divisors of \(R\). An \(R\)-module \(M\) is divisible if \(aM=M\) for all \(a\in S\), while \(M\) is \(h\)-divisible if \(M\) is a homomorphic image of an injective \(R\)-module. For any \(R\)-module \(M, l(M) = \{x \in M | ax = 0 \text{ for some } a \in S\}\). A ring \(R\) is quasi-Frobenius if \(R\) is (left) Artinian and \(R\) is an injective \(R\)-module. A ring \(Q\) is a quotient ring of \(R\) if \(a^{-1}Q\) for all \(a \in S\) and given any \(q \in Q, q = a^{-1}b\) for some \(a \in S, b \in R\). Finally, the (left) singular ideal of \(R\) will be denoted by \(Z_f(R)\), while \(E(M)\) will denote the injective envelope of the \(R\)-module \(M\).

2. Main Results.

The following proposition is well-known and its proof is similar to that for commutative rings, (see, e.g. [6]).

PROPOSITION 2.1. Let \(R\) be a ring with quotient ring \(Q\). Then:

(a) Every injective \(R\)-module is divisible.

(b) Every torsion-free divisible \(R\)-module \(M\) is a \(Q\)-module and \(M\) is \(Q\)-injective if and only if \(M\) is \(R\)-injective.

We now extend Theorem 2.10 of [4] to non-commutative rings having a quasi-
Frobenius ring of quotients.

THEOREM 2.2. Let R be a ring having a quasi-Frobenius quotient ring Q. If M is an h-divisible R-module and $M/t(M)$ is an injective R-module, then $t(M)$ is a direct summand of M.

PROOF. Since $M/t(M)$ is a torsion-free injective R-module, $M/t(M)$ is an injective Q-module by Proposition 2.1. As Q is quasi-Frobenius, every injective Q-module is a projective Q-module [1, p. 402]. Now M is h-divisible hence, as in [4], there is an R-module F which is isomorphic to a direct sum of copies of Q and an epimorphism $\alpha : F \to M$. Thus F is also a Q-module. Let $\beta : M \to M/t(M)$ be the natural homomorphism and let $f = \beta \alpha : F \to M/t(M)$. For any $q = a^{-1}b \in Q$, $x \in F$ we have

\[a(\alpha(qx) + t(M)) = \alpha(bx) + t(M) = b(\alpha(x) + t(M)) \]

and so $f(qx) = qf(x)$; i.e., f is a Q-homomorphism. Thus $K = \text{Ker} f$ is a Q-direct summand of F, say $F = K \oplus D$, and this is also a splitting of F as an R-module. Now let $A = \alpha(D)$. We claim that $M = A \oplus t(M)$. For if $x \in A \cap t(M), x = \alpha(d)$ then $0 = \beta \alpha(d) = f(d)$ so $d = 0$ and hence $x = 0$. Also if $m \in M, m = \alpha(x)$ with $x = d + k$ where $d \in D, k \in K$ and so $m = \alpha(d) + \alpha(k)$. Since $0 = f(k) = \beta \alpha(k), \alpha(k) \in t(M)$ and so $M = A \oplus t(M)$. This completes the proof.

As a consequence we have the

COROLLARY. Let R be a ring having a semisimple Artinian quotient ring Q. Then $t(M)$ is a direct summand of M for every h-divisible R-module M.

PROOF. Since $M/t(M)$ is torsion-free and h-divisible (hence divisible) it is a Q-module and thus Q-injective. But then $M/t(M)$ is R-injective and the theorem applied.

We next consider a condition which ensures that a ring R having an Artinian quotient ring will be semiprime. This result extends Theorem 3.3 of [4] to non-commutative rings.

THEOREM 2.3. Let R be a ring having an Artinian quotient ring Q. The following conditions are then equivalent:

(a) R is semiprime.

(b) Q is semisimple.

(c) $E(M)/M$ is a torsion R-module for each R-module M.

PROOF. The equivalence of (a) and (b) follows from Small's Theorem [7] since $P(R) = R \cap P(Q)$ where $P(Q) - (P(R))$ denotes the prime radical of $Q(R)$.
If (b) holds then by [3, Thm. 3.9] every essential left ideal of \(R \) contains a non-zero divisor. Since \(M \) is essential in \(E(M) \), for any \(x \in E(M) \), \((M : x) = \{ r \in R | rx \in M \} \) is an essential left ideal of \(R \). Thus there is a non-zero divisor \(a \in R \) for which \(ax \in M \) and so \(E(M)/M \) is a torsion \(R \)-module. Now assume (c) holds. First note that \(t(E(R)) = 0 \) since \(R \) is essential in \(E(R) \) and \(t(R) = 0 \). Thus \(\text{Hom}_R(E(R)/R, E(R)) = 0 \) and so the exact sequence \(0 \to R \to E(R) \to E(R)/R \to 0 \) gives rise to the exact sequence \(0 \to \text{Hom}_R(E(R), E(R)) \to \text{Hom}_R(R, E(R)) \to \text{Ext}^1_R(R, E(R)) = 0 \), and \(\text{Hom}_R(R, E(R)) \cong E(R) \). Thus \(E(R) \) has a ring structure compatible with the \(R \)-module structure. Moreover we can consider \(Q \subset E(R) = K \) so \(R \) has \(K \) as a ring of quotients and it can be verified that \(K \) is self-injective. Since \(R \) is finite-dimensional as an \(R \)-module, \(K \) is finite-dimensional as a \(K \)-module. Now if \(I \) is an essential left ideal of \(R \) then \(E(I) = E(R) \) so \(R/I \subset K/I \) hence \(R/I \) is torsion. Thus every essential left ideal of \(R \) contains a non-zerodivisor and so \(Z_I(R) = 0 \). But then \(Z_I(K) = 0 \) and so by [2, Thm. 1, p. 44], \(K \) is a regular finite-dimensional ring hence semisimple Artinian. Since \(P(R) = P(K) \cap R \), \(R \) is then semiprime. This completes the proof.

REMARK. We have shown above that \(E(R) \) is the maximal left quotient ring of \(R \) so that an alternate proof could be given by appealing to results of R. E. Johnson [5].

COROLLARY. Let \(R \) be a ring with a semisimple Artinian ring of quotients. If \(M \) is a torsion \(R \)-module then \(E(M) \) is a torsion \(R \)-module.

We conclude by giving a condition that ensures that a ring having an Artinian ring of quotients will have a quasi-Frobenius ring of quotients.

PROPOSITION 2.4. Let \(R \) be a ring with an Artinian quotient ring \(Q \). Then \(Q \) is quasi-Frobenius if and only if \(Q \) is an \(h \)-divisible \(R \)-module.

PROOF. If \(Q \) is quasi-Frobenius then \(Q \) is an injective \(Q \) or \(R \)-module. Thus suppose \(Q \) is \(h \)-divisible and let \(A \) be an injective \(R \)-module mapping onto \(Q \). Then for some index set \(I \), \(\bigoplus_{i \in I} R_i (R_i = R \text{ for all } i \in I) \), maps onto \(A \) and this mapping can be extended to an \(R \)-homomorphism from \(\bigoplus_{i \in I} E(R_i) = F \) onto \(Q \). As in theorem 2.2 \(E(R) \) is a \(Q \)-module and this last mapping is a \(Q \)-homomorphism. Since \(Q \) is \(Q \)-projective \(F = Q_0 \oplus P \) as \(Q \)-modules, with \(Q \approx Q_y \). Then \(Q_0 \), being cyclic, lies in \(F_0 = \bigoplus_{j=1}^k E(R_{i_j}) \) for some finite subset \(\{ i_1, \ldots, i_k \} \subset I \). Hence it follows that
$F_0 = Q_0 \oplus (P \cap F_0)$ and so Q_0 is R-injective and so Q is Q- and R-injective by Proposition 2.1.

University of Southwestern Louisiana
Lafayette, Louisiana 70501

REFERENCES