SHIROTA'S THEOREM FOR N-COMPACT SPACES

By Kim-Peu Chew

We shall consider only Hausdorff spaces.

In [8] Shirota has proved the following theorem: if a completely regular space \(X \) admits a complete uniformity and every closed discrete subspace of \(X \) is realcompact then \(X \) is realcompact. In this paper, we shall give an elementary proof of an analogous result of Shirota's theorem concerning \(N \)-compact spaces.

\(N \)-compact spaces were introduced by S. Mrowka in [4], where the general concept of an \(E \)-compact space was defined: given a space \(E \), a space \(X \) is \(E \)-compact (respectively \(E \)-completely regular) if it is homeomorphic to a closed subspace (respectively, subspace) of \(E^m \) for some cardinal number \(m \). For every \(E \)-completely regular space \(X \) there exists a unique (up to homeomorphism) \(E \)-compactification \(\beta_EX \) of \(X \) such that every continuous function \(f \) of \(X \) into an \(E \)-compact space \(Y \) admits a continuous extension \(f^\ast \) from \(\beta_EX \) into \(Y \) ([6], theorem 4.14). Thus, \(I \)-compact spaces (where \(I \) is the closed unit interval) are compact Hausdorff spaces; the \(R \)-compact spaces are the realcompact spaces or \(Q \)-spaces and \(\beta_IX, \beta_RX \) are respectively the Stone-Čech compactification and the Hewitt-realcompactification of a completely regular space \(X \). For \(D = \{0, 1\} \) a two point discrete space; \(N \) the discrete space of all positive integers = the countably infinite discrete space; \(N^\ast \) the one-point compactification of \(N \). It is easy to derive from the definition that the following conditions are equivalent: a) \(X \) is 0-dimensional Hausdorff (“0-dimensional” means “having a base of clopen sets”); b) \(X \) is \(D \)-completely regular; c) \(X \) is \(N \)-completely regular; and d) \(X \) is \(N^\ast \)-completely regular. It is also clear that every \(N \)-compact space is 0-dimensional realcompact and recently, it was shown in [7] that not every 0-dimensional realcompact space is \(N \)-compact. But, the realcompactness or \(N \)-compactness of a discrete space depends only upon the cardinality of the space, namely [2], [5].

PROPOSITION. For a discrete space \(X \), the following are equivalent.

a) \(X \) is realcompact
b) \(X \) is \(N \)-compact
c) The cardinality of \(X \) is non-measurable

We recall that a system of subsets of a space is said to be discrete provided that
each point of the space has a neighborhood which intersects at most one member of the system. If \(\{ F_a : a \in A \} \) is a discrete system of subsets of a space \(X \) and \(p_a \in F_a \) for each \(a \in A \), then \(\{ p_a : a \in A \} \) is a closed discrete subspace of \(X \). Therefore, according to the above proposition Shirota's theorem can be formulated as follows:

If a completely regular space \(X \) admits a complete uniformity and has the property that

\((\ast)\) the cardinality of every discrete system of subsets of \(X \) is non-measurable, then \(X \) is realcompact.

The analogous result for Shirota's theorem concerning \(N \)-compact spaces reads as follows.

THEOREM. If an ultranormal space \(X \) admits a complete uniformity of clopen coverings and \(X \) has the property \((\ast)\), then \(X \) is \(N \)-compact.

(Recall that a space \(X \) is ultranormal if for any two disjoint closed sets \(F, G \) in \(X \) there exists a clopen subset \(U \) of \(X \) such that \(F \subset U \) and \(U \cap G = \emptyset \). The above theorem, in fact, is a consequence of Shirota's theorem and the following one [3]: a strongly 0-dimensional, realcompact space \(X \) is \(N \)-compact. Note that a completely regular space \(X \) is strongly 0-dimensional if for any two disjoint zero sets \(F, G \) in \(X \) there exists a clopen set \(U \) of \(X \) such that \(F \subset U \) and \(U \cap G = \emptyset \). Clearly an ultranormal space \(X \) is strongly 0-dimensional and strongly 0-dimensional space is 0-dimensional. It will be interesting to prove the above theorem for 0-dimensional space instead of ultranormal space.)

We shall give an elementary proof of the above theorem here. We begin by stating the already known results.

LEMMA. The following are equivalent for a 0-dimensional space \(X \).

a) \(X \) is \(N \)-compact

b) \(([5], ivb)\) for each point \(p_0 \in \beta_D X \setminus X \) there exists a continuous function \(f: \beta_D X \to I \) such that \(f(p_0) = 0 \) and \(f(p) > 0 \) for \(p \in X \).

c) \(([6] \text{ corollary 4.19})\) for each point \(p_0 \in \beta_D X \setminus X \) there exists a continuous function \(f: \beta_D X \to N^* \) such that \(f(p_0) = \infty \) and \(f(p) < \infty \) for \(p \in X \).

PROOF OF THEOREM. Let \(X \) be ultranormal and \(\alpha = \{ \mathcal{U} \} \) be a complete uniformity of clopen coverings of \(X \). Let \(B = \bigcap \{ \overline{U} \setminus \mathcal{U} : \mathcal{U} \in \alpha \} \) where \(\overline{U} = \{ U : U \in \mathcal{U} \} \) and \(U \) denotes the closure of \(U \) in \(\beta_D X \). Clearly, \(X \subset B \) and we claim that \(X = B \). If not,
Shirota's Theorem for N-compact Spaces

Let $p_0 \in B \setminus X$. Let \mathcal{F} be the collection of all clopen subsets of $\beta_P X$ about p_0. Then $\mathcal{F} \cap X = \{ F \cap X : F \in \mathcal{F} \}$ is a center family of clopen subsets of X. For any U in α, $p_0 \in U$ for some $U \in \mathcal{U}$. Thus $U \in \mathcal{F}$ and $U = \overline{U} \cap X \in \mathcal{F} \cap X$. Hence $\mathcal{F} \cap X$ is an α-cauchy family and since α is complete, $\cap(\mathcal{F} \cap X) \neq \emptyset$. But $\cap(\mathcal{F} \cap X) \subset \cap \mathcal{F} = \{ p_0 \} \subset B \setminus X$. This is a contradiction. Thus $B = X$.

For each point $p_0 \in \beta_P X \setminus X$. Since $X = B$, there exists an $U \in \alpha$ such that $p_0 \in \cup \{ U \mid U \in \mathcal{U} \}$. Since α is a uniformity, there exists a sequence $\{ \mathcal{U}_n \}$ in α such that \mathcal{U}_1 star refines \mathcal{U} and \mathcal{U}_{n+1} star refines \mathcal{U}_n for $n = 1, 2, \cdots$. Suppose $\mathcal{U} = \{ U_a : a \in A \}$ where A is assumed to be a well-ordered set of indices. Then as A. H. Stone showed in the proof of (Theorem 1, [9]) there exists a family $F = \{ F_{n,a} : n = 1, 2, \cdots ; a \in A \}$ satisfying the following conditions.

a) $\{ F_{n,a} : n = 1, 2, \cdots ; a \in A \}$ is a closed covering of X

b) every element of \mathcal{U}_{n+3} does not intersect two elements of $F_n = \{ F_{n,a} : a \in A \}$ at the same time, and
c) $\text{st}(F_{n,a} \cup F_{n+1}) = \cup \{ U \in U \mathcal{U}_{n+1} : U \cap F_{n,a} \neq \emptyset \} \subset U_a$.

Thus, for each $n = 1, 2, \cdots$, $F_n = \{ F_{n,a} : a \in A \}$ is a discrete system of closed subsets of X, so $F = F_1 \cup F_2 \cup F_3 \cup \cdots$ is a σ-discrete closed covering of X and F is a refinement of \mathcal{U}. Hence $p_0 \in F_{n,a}$ for each $n = 1, 2, \cdots$, and $a \in A$.

Let $S_n = \cup F_n$ for each $n = 1, 2, \cdots$. We shall distinguish two cases.

Case 1: $p_0 \notin S_n$ for every n. In this case, there exists a continuous function $f_n : \beta_P X \to D$ such that $f_n(p_0) = 0$ and $f_n(p) = 1$ for $p \in S_n$. Setting

$$f(p) = \sum_{n=1}^{\infty} 2^{-n} f_n(p)$$

for $p \in \beta_P X$.

We find that $f : \beta_P X \to I$ is continuous and $f(p_0) = 0$, $f(p) > 0$ for $p \in X$. By Lemma, X is N-compact.

Case 2: $p_0 \in S_k$ for some k. Since F_k is a discrete system of closed subsets of X, S_k is closed in X and hence each member of F_k is clopen in the subspace S_k of X because $S_k - F_{k,a}$ is closed in X for each $a \in A$. Consequently, each member of F_k is clopen in the subspace $S_k \cup \{ p_0 \}$ of $\beta_P X$. Since $p_0 \notin F_{k,a}$ for $a \in A$, $F_{k,a} \cap (S_k \cup \{ p_0 \}) = F_{k,a} \cap (S_k \cup \{ p_0 \}) = F_{k,a}$ so $F_{k,a}$ is closed in $S_k \cup \{ p_0 \}$ for each $a \in A$. Moreover, since $p_0 \in S_k = S_k \setminus \overline{F_{k,a}}$, $p_0 \notin \overline{F_{k,a}}$ and $p_0 \notin \overline{F_{k,a}}$ so $p_0 \in S_k \setminus \overline{F_{k,a}}$ for each $a \in A$. Now $(S_k \cup \{ p_0 \}) \setminus F_{k,a} = (S_k \setminus F_{k,a}) \cup \{ p_0 \} = [(S_k \setminus (S_k \setminus F_{k,a})) \cup (S_k \setminus F_{k,a})] \cup \{ p_0 \}$, $(S_k \setminus F_{k,a}) \cap (S_k \cup \{ p_0 \})$ which is closed in $S_k \cup \{ p_0 \}$ so $F_{k,a}$ is open in $S_k \cup \{ p_0 \}$ for
We consider the collection $F_k \cup \{p_0\}$ as a decomposition space of $S_k \cup \{p_0\}$ and let π be the projection of $S_k \cup \{p_0\}$ onto $F_k \cup \{p_0\}$. It follows from the preceding that $\{F_{k,a}\}$ is clopen in $F_k \cup \{p_0\}$ for each $a \in A$. Next, let M be an open set in $F_k \cup \{p_0\}$ and $p_0 \in M$. Then $\pi^{-1}[M] = S_k \cup \{p_0\} \setminus \{F_{k,a} : F_{k,a} \in M\}$ which is closed in $S_k \cup \{p_0\}$ since each $F_{k,a}$ is open in $S_k \cup \{p_0\}$. Hence M is closed in $F_k \cup \{p_0\}$. This proves that $F_k \cup \{p_0\}$ is 0-dimensional and clearly it is also Hausdorff.

If $g : F_k \to D$ then the function $f = g \circ \pi$ is a continuous function defined on S_k into D. Since S_k is closed in X and X is ultranormal, f admits a continuous function from X into D and in turn, it admits a continuous extension from $\beta_D X$ into D. Hence f admits a continuous extension f^* from $S_k \cup \{p_0\}$ into D. Setting $g^*(p) = g(p)$ for $p \in F_k$ and $g^*(p_0) = f^*(p_0)$, we see that the equality $f^* = g^* \circ \pi$ still holds, therefore g^* is a continuous function from $F_k \cup \{p_0\}$ into D. In other words, every continuous function g from F_k into D admits a continuous extension from $F_k \cup \{p_0\}$ into D and it means that p_0 can be considered as a point from $\beta_D F_k \setminus F_k$.

Since F_k is a discrete system of closed subsets of X, according to the property (*) the cardinality of F_k is non-measurable. Moreover, F_k is a discrete subspace of $F_k \cup \{p_0\}$, by Proposition, F_k is N-compact. Since $p_0 \in \beta_D F_k \setminus F_k$, by Lemma, there exists a continuous function g_0 from $\beta_D F_k$ into N^k such that $g_0(p_0) = \infty$ and $g_0(p) < \infty$ for $p \in F_k$. Define $f_0 : S_k \cup \{p_0\} \to I$ as follows:

$$f_0(p) = \frac{1}{(g_0 \circ \pi)(p)} \quad \text{for } p \in S_k \text{ and } f_0(p_0) = 0$$

We see that f_0 is continuous. By theorem 3.1. (2) of [1], the restriction $f_0 | S_k$ has a continuous extension h from X into $\{0\} \cup \left\{\frac{1}{n} : n \in N\right\}$ such that $h(p) > 0$ for $p \in X$. (Note that if $B = h^{-1}(0) \neq \emptyset$ then B and S_k are disjoint closed subsets of X, since X is ultranormal, there is a continuous function $g : X \to D$ such that $g|B = 1$ and $g|S_k = 0$. Let $f_1(p) = \max\{h(p), g(p)\}$ for $p \in X$. Then f_1 is a continuous extension of $f_0 | B$ from X into $\{0\} \cup \left\{\frac{1}{n} : n \in N\right\}$ such that $f_0(p) > 0$ for $p \in X.$) Now, since $\{0\} \cup \left\{\frac{1}{n} : n \in N\right\}$ is D-compact, h admits a continuous extension h' from $\beta_D X$ into $\{0\} \cup \left\{\frac{1}{n} : n \in N\right\}$. Clearly, $h'(p) > 0$ for $p \in X$ and $h'(p_0) = f_0(p_0) = 0$ (h' and f_0 agree on S_k and hence they agree on every point of
Shirota’s Theorem for N-compact Spaces

5. S_k. This shows that X is N-compact.

State University of New York at Buffalo
University of Malaya, Kuala Lumpur, Malaysia

REFERENCES

