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Abstract

L.S. Pontryagin’s maximum principle is applied to the minimum critical mass
problem without any restriction on the ranges of uranium enrichment. For the
analysis, two group diffusion equation is adopted for a cylindrical reactor
neglecting the vertical axis consideration. The result shows that the three-zoned
reactor turns out to be most optimal: the inner and outer zones with the
minimum enrichment; whereas the middle zone with the maximum enrichment.
With the given three-zoned reactor, critical condition is derived, which leads
to the calculation of the determinant. By finding the roots of the determinant
the numerical calculation of the minimum critical mass is carried out for the
case of Kori reactor geometry changing the minimum or the maximum enrichment.
It is found from many computed values that the least possible critical mass
turns out to be the case of 1.2% maximum enrichment for the middle zone and

0.65% minimum enrichment for the inner and out zones.
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) problems which are encountered in the field
1. Introduction of nuclear reactor theory. Attempt was made
In recent years a great deal effort has been in the past for finding the optimal conditions

employed for the development of optimization in nuclear engineering, 7.e., power maximiza-
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burnup
etc.,

tion, critical mass minimization,
maximization, refueling optimization,
by means of mathematical approach.1™®

For instance, Suzuki® made an effort to
solve the problem of fuel burnup maximization
by topological mapping theory and classical
calculus of variation, while Sauar® made use
of linear program for the solution of in-core
fuel management optimization. On the other
hand, a good many number of scientists and
research engineers have “adopted the maximum
principle by Pontryagin in tackling their
optimization topics since Kochurov® introduced
that methodology in 1965 for the calculation
of minimum critical mass of a nuclear reactor.

Kochurov has verified, using a two-group
diffusion equation in slab and spherical
geometry reactor, that the optimal critical
configuration for a thermal reactor is made
up of a three-zoned system: namely, the
inner zone with the maximum permissible
uranium concentration; the middle zone with
such a uranium distribution which corresponds
to the constant thermal neutron density;
and the reflector. Using a two group diffusion
model in slab geometry, Zaritskaya and
Rudik® applied in 1967 Pontryagin’s maximum
principle to seek for the minimum criticial
dimension of a thermal reactor having a
given total power, with constraints on the
maximum power density as well as on the
maximum fuel enrichment. The clarification
of relationship between the minimum critical
size and the maximum power is attributed to

their work.
Goldschmidt?
Kochurov’s work to minimum critical mass
problem of a slab reactor having a given
power which is subject to constraints on the

extended, in his thesis,

maximum power density and on the maximum
fuel enrichment. His former paper® also shows

the distribution of fuel enrichment which

minimizes the critical mass of a fast reactor.
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It is attempted in this paper to find the
minimum critical mass arrangement
cylindrical reactor making use of Pontryagin’s
which has

widespread uses in the areas of
problem. The basis of the maximum principle
is placed on the generalization of the Lagrange
problem in the calculus of variations. The
philosophy of this principle is to find the very
condition that optimizes the functional we

in a
maximum principle? enjoyed
control

consider. Unfortunately, however, this princi-
ciple only gives necessary conditions, and fails
to provide us with an answer as to how many
zones of reactor core or what kind of
enrichment there should be in the core: which
is to say that there is no algorithm for them.

To help understand the maximum principle
to a certain extent, an outline of this theory
is formulated in a section of this paper. At
the same time, effort is made to apply this
principle to the two group diffusion equation
so as to find the optimal distribution of fuel
arrangement that minimizes the critical mass
of a cylindrical reactor.

Apart from other papers previously pub-
lished, it may be regarded as the unique
achievement of this paper that no restriction
on the uranium enrichment is adopted in
performing this work.

The optimal condition for the fuel distribution
draws our keen attention in this paper, and,
at the same time, the types of fuel arrange-
ment which satisfy the maximum principle
are repeatedly tested so as to verify at what
condition they fall under the optimal case.
Finally the critical condition is imposed on an
optimal reactor, and on the case of Kori

reactor geometry as well.

9. The Maximum Principle

In accordance with 1.S. Pontryagin, let us
proceed to the formulaiion of the theorem
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which yields the solution of the fundamental
problem. Hence a system which can be
expressed by differential equations is presumed
to be as follows:

adxt _ric,1 a2 n 4,1 4,2 r_.'_)
L =filxl, a2 exn, ut, ud, e ) =f(x, u),

dt
i=1,2,3,n, €D)
or in vector form,
d.-; :-—->-—)
5 fCx, ) (2

where _f(_.;c #) is the vector with coordinates
F1Co ), (1), +eeee £, ).

It is supposed that an additional function
folat, &2, exm,) u)=f°(;, #) is given, and that
the functions, ', 7=0,1,2--'n, are assumed to
be continuous in the variables x!, 2, ---x*, %, and
are continuously differentiable with respect to
x, %%, +x. In this case, the fundamental
problem (finding the optimal controls) can be
formulated as follows:

“Among all the admissible controls, #=u(¢),
effort is made to find one for which the

functional
7={bre1ao, uolar ©)
takes the least possible value.”

In order to cope with the optimality condi-
tion, it will be convenient to reformulate the
present problem, in such a way that a new
coordinate, x°, which varies according to the
following law, is defined:

dx® __ e
i =f(x, u). @

Then the fundamental system of Equation
(1) is reduced to

dx‘. o= i Y .: Xy
o filx,u), 1=0,1,2,n. (5D

In addition another system of equations is

defined in the auxiliary variables, ¥, ¥, ---¥,,

4, _ 5 of(nw)
at =5 aw U
§=0,1,2, - n, (6)

Since this system is linear and homogeneous,
it admits,
unique solution

for any initial conditions, the

U=(W, U, Ty, oo T,)
for the ¥; which is defined on the entire
integral #=¢{=f, on which #(¢) and x,
7=0,1,2,+-'n, are defined.

The above two systems, namely, (5) and
(6), are now combined into one entry. In
order to do so, the following function H of
the variables, 1, x2, ---x*, Wy, ¥y, - ¥,, u', u?, -

ur, are considered.

—

H(T, %,0)=17, ], 0} =5 Wf*Ca, ).
)
It would be easily verified that the above
systems, (5) and {6), could be rewritten with

the aid of this function in the form of the
following Hamiltonian system:

_‘fi’;;=g_lw{_ L £=0,1,2, n, @®
i‘iy;—l‘ = _%H"_—’ 1'_—..0, 1’ 2’ ...... n. (9)

Then, so far as the optimal control problem
is concerned, the maximum principle of
Pontryagin can be stated as follows:

“In order that #(?) and x°(¢), ¢=0,1,-n,be
optimal, it is necessary that there exists non-
zero continuous vector function,

%(t)={%(t), (), - T, (&)} corresponding to

u(?) and x°(®), 7=0,1,2,+-n, such that:

1. For every ¢, fy=t=ft;, the function
H{»E)’(t),;(t),u} of the variable # attaing its

maximum at the point #=u(?):

H{T), 2} = M{E®, x@D}; 10

2. At the terminal point #; the relations
Tt =0, (11a)
M{@), %(t)} =0, (11b)

are satisfied. If ddatfo =0 for t,=t=<t,,

¥y=constant=0."

This theorem is extremely useful in the
case of autonomous system (Z.e., the
Hamiltonian H does not depend explicitly
on the variable ), but it can be extended

to the nonautonomous system. In this
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paper, however, only the results both of
autonomous and nonautonomous systems are
being utilized.

3. Two Group Diffusion Equation

Two group approximation® is to suppose
that the neutrons may be divided
energy groups, namely, thermal (slow) and
fast. In the steady state condition, two group
diffusion equation which describes the fast

into two

and thermal neutron fluxes is given by
V(D é)—3 11+ J;"#Zz¢z=0, (12a)

V(DF )~ 22+ p2r161=0, (12b)
where D; : diffusion coefficient for fast
neutrons
D, : diffusion coefficient for thermal
neutrons
2.1 . macroscopic scattering cross-sec-
tion of fast neutrons for moder-
ator
22 : macroscopic absorption cross-
section of thermal neutrons for
U-235
k.. : infinite multiplication factor
p : resonance escape probability.
In the above treatment, the fast neutrons are
represented by the subscript 1, whereas the
thermal neutrons by the subscript 2.

As is self-explanatory, the Equation (12)
is a coupled balance equation for fast and
thermal neutrons. In a thermal reactor, the
fast group neutrons are resulted from fissions
induced by J},:¢; thermal neutrons absorbed in
fuel. Thus, at the point 7 nsZz;qu(?) fast
neutrons are produced per cm?-sec. At the
same time J):¢; neutrons are lost from the
fast group due to slowing down process. As
the result of slowing down out of the fast
group, it is taken for granted that the slowing
down density »31¢ in the fast group turns
out to be the source term in the thermal
diffusion equation, For the simplicity, the
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following assumption is imposed on the two
group constants, which is supposed to be
reasonable and compatible in reactor theory.

Assumption:

1. D; and D; are constants (these are, in
general, slow-varying functions for a given
moderator).

2. Z. is constant.

3. X =(0,BIN2Z5L Neihersg 2thersy=(rg! +5)=u,

where o, is microscopic absorption cross-

section for UZ®,
7 -__a.a235(N235+N238),
§=Nothersg others
and #’ is the uranium enrichment, that is,

N235 . .
NS NS, Equation (12) is now reduced to

Equations (132) and (13b), respectively.

72¢1~71;¢1= —aus, (13a)

Pigu—pusr=——b1, (130)
where

21
Dy

Applying Equation (13) to a cylindrical
reactor and using Pontryagin’s maximum
principle, work herein is directed toward
seeking the optimum control variable which
minimizes the total uranium mass to be loaded
in the core. When # is only dependent on
radius 7, independent of vertical axis z in a
cylindrical reactor, the total uranium quantity

to be loaded is linearly related to
J =27rg:u(r)rdr, (14

where R is the radius of the cylindrical
reactor.
Let us consider a two group solution of the
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radial problem for finding the minimum critical
mass, 7.e., the minimum of the following
functional J:

J= ZnS:u(r)rdr.

Hence the notations such as the following are

introduced:
x°=5;u(r)rdr;

x1=gy,

dén
dr ’

x3=¢,
_, d:
x“—rTr . (15)

Then the two group diffusion equation may

xi=r

be written in the form of:

dxr =2rur, (16a)
dxt 1

dr =_;_x2’ (lﬁb)

2

‘fl’; = 1_11 ral—aurxd (16c)
ax® 1 v

7;‘:714, (16d)
‘f;f =pBurx®— le ral, (16e)

The Hamiltonian of the system (16) has the

form of:
H=( ﬁ,_f)) =u(Qnr¥o—ar¥ 23+ pr¥ x*)
+(%W1x2+%rszl+7L73x4
_1 N
=Tl )=upt+-2, an
T2

where the auxiliary functions ¥; (:=0,1,2,3, 4)
satisfy the equations

6211;0 :_% =0, (18a)
J{i_er — .._—gxil = —-}17 0ot —;_12—7'10'4, (18b)
Kfiyiz __ Tf’;g _ ___’1:;0'1, (18¢)
i?%: — gg =aur¥,—pur¥,,  (18d)
A Ly, (18¢)

4. Admissible Types of Control

When #(r) is considered a variable over the

volume of the reactor within the limits:

Unin =t ()t
Pontryagin’s maximum principle requires that,
in order to find optimal distribution #(r), a
vector function ﬁ (7=0,1,2,3,4) must be
sought, which is continuous and not identically
equal to zero, such that the Hamiltonian H
as a function of the independent variable #(#),
reaches a maximum at every point in the
region 0=r=R.

In consequence of the linear dependence (17)
of the Hamiltonian on #, it is clear that the
following types of control are admissible:
U(r) =y, for o=(2mr¥o—ar¥,x°+pr¥ x%)<0,

(19a)
U(r)=tp,, for o=ar¥lo—ar¥l 53+ pr¥ %3 >0

(19b)
because of the fact that, in this case, the
Hamiltonian, as a function of the argument #,
reaches a maximum.

Together with the differential equation for
%', boundary conditions must be given for the
unique solution to be determined. Boundary
conditions based on the physical argument in
reactor theory #71% are:

1. ®(R)=x%(R)=0, (20a)
2. ##(0=x*(0)=0, (20b)
where R is the exptrapolated radius. Now,

how is it possible to impose boundary condi-
tion on ¥;?

With regard to this matter, Pontryagin does
suggest that ¥, must satisfy the transversality
conditions™
that is,

T1(0)dx |, o+T2(0)dx2], o+ T3(0)d 3], 0

+74(0)dx*],-0=0 (21a)

at the end points, r=0,r=R,

and
ZV;(R)dxl Vet a(R)YAXE], _p+¥(RYdx% ok
+¥(R)dx*|,.r=0, (21b)



120

where r is parameter,

s0 dx'(R)=dx*(R)=dx*(0)=dx*(0)=0

¢ (RI)=x(RI=x*(0)=x*(0)=0).
From the transversality conditions,

1. 7:(0)=¥3(0)=0, (22a)

2. ¥V:(R)=¥(R)=0. (22b)
We infer from the maximum principle that
¥o=const. <0 (it is, however, seen that ¥,
if
¥,=0, the quantity #(r)r in Hamiltonian that

cannot be zero, owing to the fact that,

we are going to minimize vanishes).

Since the system of equations for ¥, is
homogeneous, %o can be normalized so that
22¥o=—1. Then the function ¢ becomes:

o(r)=—r(1+a¥x°—p¥ (x3). 23

From the boundary conditions (20) and the

transversality conditions (21), it is easily
verified that
p(0)=0 (242)
and
p(R)=—R<0. (24b)
CASE 1
ok < Un R
Tyl
CASE I Um
L Um
[ LemTT s N
okl z R
\\\
\\
\\
~
f(r)\“-li
UM
CASE I o Unm
o\‘ ,1/ N R
N “n [P
S d \\\
!(”\\\\J

-R

J.

4
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The fuction ¢(») passes through zero at
r=0 and is negative at »r=R. In order to
determine the regions of

P<O0(U=Wpir) and p>0 (Upm,s),
this problem is investigated in some detail.
Equation (24) means that,
optimal region arrangement with the boun-
daries at »=0 and =R, the function ¢(»)
in

considering an

has many optimal possibilities as shown
Figure 1.

Fig. 1 shows various possible types of ¢(7)
and their corresponding uranium enrichments
which satisfy the condition (19). Hence the
maximum principle implies that each fuel
arrangement satisfies the necessary condition
for the reactor to have the minimum critical
mass. Unfortunately, however, this principle
does not clarify as to which
optimal one.

Therefore, all the possible arrangements
should be analysed with the aid of boundary

is the most

CASE T yu Un

Unm.

UM

CASE V yn -

Um

Fig. 1. Possible optimal arrangement
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conditions or physical meaning. Taking only
boundary conditions into account, each fuel
arrangement must be given thorough check so
as to find out whether such an arrangement
satisfies Pontryagin’s maximum principle or
not. In other words, each case of fuel
arrangement is tested in an attempt to check
whether or not there exists a unique non-zero
continuous vector function ¥; (¢=0,1,2,3,4)
corresponding to uranium enrichment #(r) and
% (r)(¢=0,1,2,3,4). In order to obtain the
solutions x* and ¥; which are made into being
in the zones of each fuel arrangement, let us
go back to the original equations (13) and

(18), which read:

szl.'_‘[llxl=-aux3’ (25a)
szs_ﬁuxaz__rljxl, (25b)
idy%q—_—o, (¥ o=constant<0) (26a>
avy 1 g1
=T, (26b)
v, 1
dT _—-TWI; (26(:)
d{s =qur¥y—pur?, (26d)
av. __ 1
=t (26e)

Eliminating ¥, and ¥; from Equation (26),
the relations between ¥; and ¥, can be
obtained, which are quite analogous to those
between x! and x°,

Substituting the following relations into (26b)
and (26d),

__. A4y,
Vi=—r dr ’
_ av,
and Uz=-—r ar [from (26¢) and (26¢)],

we obtain the below-mentioned equation.
(27a)

P —Bul s = —au¥l,, (27b)

The solutions of Equations (25) and (27) are
easily obtainable by the standard method® ® 10,
As shown in Equation (25), the thermal

rw,—Ly,=— Ly,
T1 T2

flux x3 is seen in the equation representing the
fast flux x! and, conversely, x! is seen in the
equation for the thermal flux x3. These equa-
tions can be decoupled by preferentially
solving the Equation (25b) for x':

xt=—ro (P23 —Bux®). (28a)
By the substitution of this expression into
(25a), a fourth-order equation is obtained for
x% alone as follows:

—1272(72x3—ﬁux3)+—% (P2x°—Bux®) =-aux®.

(28b)
Equation (28b) is rewritten:
_ 1 a B
7272x3 (ﬁu+ 71 )sz3+u T2 T1 )
=W+ WP —Dx*=0, (290

=k

+ (L) (-2 —£)]

and
2= 1 1
4 2 ['Bu+ 71
Ly @ B
+\/<ﬁu+ 1'1) +4u< T2 T1 il
Let the solutions for the themal flux x®
coresponding to the two values, x#* and 2% be

X and Y, respectively, then these equations
may be written as the following expression:

7eX 4+t X =0, (30a)
and

7Y —atY=0. (30b)

Each solution of X and Y consists of two

independent functions since Equations (30a)
and (80b) are both second-ordered. The linear
combination then gives for the thermal flux x3:

x=AY+CY. (31a)
Applying the same method to the fast flux
x!, x! can now be found in the same form as
follows:

x=A'X+C'Y. (31b
These solutions for x' and x3 appear to be
involved with four arbitary constants (A, C, A’
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and C').
It is, however, shown that only two out of
When the
solution for % is substituted into the Equation
(25b), it is readily seen that:

A’ =S’ =constant
A £

Cl
ol =S” =constant,.

four constants are independent.

The quantities S’ and S7 are called the
coupling coefficients® 112> designated with
two group constants for the fast and thermal
fluxes, respectively, and these are found in
the next section of this paper.

In the cylindrical geometry, the solutions X
and Y which satisfy the Equations (30a) and
(30b) are zero-order Bessel function and zero-

order modified Bessel function'®, respectively:

_ X 1 dX |
A R

: zero-order Bessel equation (32a)
d*Y 1 dY

(=YY= art T r Tar —2Y=0

: zero-order modified Bessel equation. (32b)

The solution X is represented by {/.(ur),
Y,(ur)} and Y by {I,(7), K,(ar)}, where each
bracket represents a linear combination of the
two functions inside of it.

Therefore, the fast flux x? and the thermal
flux % are linear combination of the four
functions {J.(er), Y.(pr), I,Q2r), and K,(ar)}:

x1=aSYo(pr)+bS* Yo pr)

+¢S31,(Ar)+dSHK(ar),  (33a)
and
B=afo(pr)+bYo(pr)
+eloQr)-+dKo(Ar), (33b)

where St, 5%, 5% and S* are coupling coefficients
as explained above.

Now turning to the Equations (27a) and
(27b), let us solve the equations for ¥: and
¥, Since ¢ does not include ¥ and ¥s, it is
unnecessary to get information for ¥ and
¥ in this subject.

From Equation (272),
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7= —1272w2+—§j—w2. G

As in the case of «' and x3, the substitution
of the equation into (27b) makes it possible
to obtain a fourth-order equation for ¥::

Vz[—'l'z(Vsz_%Wz)

+ﬁurz(72W1—%lwz>] =—au¥,. (35
Equation (35) is rearranged:
rrows—(Lopu)rw—(Lau—Lopu o
=+ DW=V, =0. (36D
The solution of auxiliary variables ¥. and
the thermal flux x® has the same form as
well, which is somewhat remarkable fact to
notice. Therefore, the solution of the auxiliary
variables ¥, and ¥,
following form:
¥o= AJo(pur)+BY o pr)+CL(r)+DKo(ar)
(37a)

are written in the

Ti=ATYo(pr)+BT*Yo(pr)
+CT,(Ar)+DTKar), (37h)
where T, T2, T®and T* are coupling constants.
For an arbitrary control #(r) to be optimal,
in accordance with the maximum principle,
there must exist a non-zero unique continuous
vector function ¥:(=0, 1,2, 3, 4) corresponding
to u(r) and % (/=0,1,2,3,4).

5. Determination of Optimal Fuel
Arrangement

Now let us investigate further so as to
clarify what kind of fuel arrangement would
satisfy the Pontryagin’s maximum principle.
Each case in Fig.1 is analysed as follows:
Case 1) : One-zoned arrangement

2= A S Cpnt )+ B1SIY (it I+ C1S I, (2n?)

+D1StKo(2,7) (38a)
28= AT o(ptm? )+ B1 Yo ptn#) +Cirlo(amr )+

D, Ko(Q21), (38b)
Ta=ar TH .Cunr) 01 T3V o pur)

41 T3 Qur)+d1 TAK,(Anr), (38¢c)

Ty=a1J o pm?)+0:1Yo( pim?)
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CASE 1

Um

-~ -
-
~.
~
~ -
-

PrI™"—R

Fig. 2. (a) one-zoned arrangement

+CIIO(xmr)+d1K0<2mr): (38d)

where . .
=[5 (bt )
+«/ (ﬁu,,,%—%l) z-I-4u,,.(~:'; “%» ] 1 §
(38¢)

to=] - [punt =
1/2
/(g L)+ 4u(2 _%)] ]

(381)
Boundary conditions:
2 (R)=x(R)=0, (39a)
dx! ax® _
dr | ..~ dr I ,=0—0’ (39b)
U(R)=¥(R)=0. (39¢)

Hence the four boundary conditions for x! and
x® completely determine the unknown constants
Ay, By, Ci, and D,. The unknown constants,
a1, by, 1 and 41, can be determined but not
uniquely by the two boundary conditions for
¥, and ¥4 This satisfies the necessary condi-
tion for optimality. It is, however, clear from
the viewpoint of the reactor analysis that the
uniform reactor like this one cannot be opti~
mal. Consequently, the one-zoned arrangement
is not attempted for analysis.

Case 2) : Two-zoned arrangement

O=r=ry

#r=A1S1] (s )+BiSTY (pur)

F+CiSH.Qur)+DiSIK.(ayr), (40a)
x3=A:] Cuar)+B1Y Cpnr)
+CiL,Q2ur)+DiK, (A7), (40b)

(rjff."ER D

CASE I Um

-
- ~-

~
Sy ~d-r

Fig. 2. (b) Two-zoned arrangement

x'= Azsé ’a(#m?') +BZS§ Yu(#m?”)

+CoSH () +D2SiK (A7) (40c)
%3= Aol (ptmt ) +B2Y ()

F+Col 6Q2ur)+DeKo(an?), (40d)

and

O=<r=r)
To=ar T o(ppr)+b, T? YoCpur)

+Ci T3LQAur)+d TIK,Qur), (41a)
i=ar Jolpnr)+b:1Yo(pur)

Ferlo(Aur) a1 K.Qur), (41b)
(ri<r=R)
Vo= a: T3 JoCmr)+b2 TEY o gt

+e: TioQnr), +d2 TiKo(Ar), (410
U= ay o(m?r ) +0:Y o ftm?)

2l )+ d2Ko(2,07), 41d

where
Hu= [—%‘ [*(ﬂ“M‘*“}T)
Vi 1/2
—h/(ﬁzm-i—?l;) +-4uy TL: —{—)H
(41e)

A= ["’%— [ﬁum”{“—rll‘
+\/(ﬁuM+%>2+4uM (—;’7 -—g—)} ]
(41D

Boundary conditions and the joining conditions
at the interface r; are:

1/2

(R =x%(R)=0, (42a)
dx! dx3 _
dr |, dr ,=o~0’ (42b)
«! : continuous at r=r, (42¢)
X3 : continuous at r=r;, (428
dx! (42¢)

¢ continuous at r=r,
dr v
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(n=<r=<r,)

2= A3S3 oCpur)+B2SE Yo par)

dx® . .

4, continuous at r=r;. 420
V(R)=¥,(R)=0, (43a)
¥, : continuous at r=r,, (43b)
¥, : continuous at r=r,, (43c)

(igz ! continuous at r=ry, 43d)
%‘— : continuous at r=r,, (43e)

Eight boundary conditions for x! and &3

determine eight unknown constants, Ai, By, C:
Dy, Az, B2, C;, D;. However, the seven boun-
dary conditions are able to determine the eight
unknown constants, ai,bi,ci1,dy, az,b2,¢2, and
dz, but not uniquely. As was the case for the
one-zoned arrangement, the two-zoned reactor
satisfies the necessary condition. In accordance
with the engineering practice, the arrangement
of high enrichment in inner zone mnaturally
causes higher burnup of fuel in central zone,
and such fact will lead to the unfavorable
power peaking problem which cannot be ac-
ceptable in reactor design. Therefore, attempt
is not made for the analysis of the two-zoned

arrangement.
Um
CASE I Um Um
""\\\
1" \\
0 _'I x‘ R
N 2 R \
~. - N\
- A Y
\
™
~
NoR

Fig. 2. (¢) three-zoned arrangement

Case 3) : Three-zoned arrangement.
O=r=rp)

:xx = Alsffo(#mf)‘{'Ble Yo(ﬂmr)

+CiS2 QA7) +DiSEKeRr), (44a)
2= A1Jo(pm?)+B1Yo( ptm?) _
+CiloQAnr ) +-D1 Ko(a 1), (44b)

+CoS3o(Aur)+DS3Ko(Ayr), (440
X3= Az]o(#ur)+BzY0(#Mr)

+ColoQAur )+ D2Ko)Aut), (44d)
(r:=r=<R)
! =A;;S§]o(,u,,,r) +BsS§Yo(/,lmr)

+C3Sglv<2mr)+D3S§K0(Zmr); (443>
= Aslo(pm? )+ Bs Yo pmt)

+C3ls(Amr )+ D3Ko(2ur). (446

Substituting Equation (44) into Equation (25),
the coupling constantsS;’s are obtained:

Si=Si=8i=S8i=r:(p} +Bun, (49
S$§=S1=81=84=—1,(2:—pw..), (440
Si=Si=r2(ui+pur), (44D
§=S8t=—0(f—Bum), (44D
and
O=r=<ry
e=a1T1J o(pm?)+0:1 TIY o)
‘a1 T3 (Ar)+dy TiK (2,7, (45a)
Ti=m fo(llmr)+bl Yo(ﬂmr)
+elo(A.7r)+d 1 Ke(A,1), (45b)
(r1=r=<rj)
To=a:T3JoCuur) b2 TEY o par)
+CzT§]0(1Mr)+d2 TéKo(ZMr), (45C>
Ti=as Jolpur )+ Yo pur)
Fc2le(Anr) 4+ d2Ko(Ayr), (45d)
(rerSR)
To=as T3] o(pm?)+03 TY o ttm?)
+e3 T3o(Anr)+ds TAK (2,7, (45€)
Vi=as Jo(pn? )+ o pmt)
+0310<2mr)+d3K0(1mr) . (45f)

Boundary conditions and joining conditions

at interfaces 7; and r; are:

dx! _ dx® _
dr ’=0'— dr "0—0; (463)
dx! ax?
1 3 .
¥ X T4 Tar

continuous at r=r;, and r=r,,

(46b
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Table 1. Selection of the optimal conditions
Type of N°'C§£S?a“nkt’;°w" Nob::dﬁ?::: ary Is the No. of Is It Optimal
Boundary Conditions
Arrangement xt, 20 ] w2, s Total| 2%, x° | @re, 10‘4I @ lT otal Sufficient ? Arrangement ?
One-zoned 4 4 8 4 2 Q 6 No No
Two-zoned 8 8 16 8 6 1 15 No No
Three-zoned 12 12 24 12 10 2 24 Yl\?s Yes
0

Four-zoned 16 16 32 16 14 3 33 (overdetermined) No
Five-zoned 20 20 40 20 18 4 42 4 14
Six-zoned 24 24 48 24 22 5 51 ” ”
Seven-zoned 28 28 56 28 26 6 60 Vi ”

F(R)=x(R)=0, (46¢)

and
T (R)=V,(R)=0,
av, av,
Vs Uy, ~dr ' dr
continuous at =7, and r=r,, (47b)

go(h) = go(rz) =0. (47C)

Twelve boundary conditions for 2! and a®,

and ¥, and ¥4, respectively, determine all the
unknown constants, that is to say that there
exists a unique vector function ¥:(=(,1 2,3,
4). In conclusion, therefore, the three-zoned
arrangement satisfies Pontryagin’s maximum
principle and is eventually optimal.

In the same way, the analysis for other
zoned arrangements more than 4 zones is qui-
te possible considering the boundary conditions
and joining conditions at interfaces [zeros of
o(r)]. As in Table 1, it comes to our notice
that the number of zones increases as the
number of boundary conditions increases. Due
to too many boundary conditions, they over-
determine the solution, which means that solu-
tion does not exist at all in any case. Conse-
quently, 4-, 5-, 6~, 7-zoned arrangements,
etc., are considered not to be optimal accord-
ing to the maximum principle. Therefore,
the three-zoned arrangement is the most opti-
mal type of fuel distribution, so far as the
critical mass minimization problem is con-

cerned.

Fig. 8. Distribution uranium enrichment
in three-zoned reactor

6. The Critical Condition

The general solutions (44) give the fast
flux x! and the thermal flux %% in the three-
zoned arrangement: zone [ with the minimum
O=r=ry; with the
maximum value #y(71=r=<r;); and zone [l
with the minimum value u, (r2<r=<7r;). The

value #. zone |

flux distribution in each zone is the linear
combination of the functions J,(r), Y.(), L(»)
and K,(7). The quantities yet undetermined are
the constants, A1, By,Cy, D1, Az, Bz, Cz, D, As, Bs,
Cs, and D;. These may be computed from the
boundary conditions and the interfacial condi~
tion or joining conditions. From the physical
point of view, the inferfacial conditions are
the continuity of flux and net current both in
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SiJoCuar 1) A1—=S3 o par1) Az—SEVoC puti) Be+S36Cimtr 1 )Ci—S 3 o 23071 )Co— SEKo(AurD D=0
—Smhipnt 1) Ar+S s par 1l paat 1) Az +S3ps a1 DB+ S22, [ Rt 1 DC1— S350 1} (27 DD, =0
S3To(unr2) Ae— S JoCptmt2) As+SEYoCtue?2) Be—~SEY o T 2)Bs+S3l( Ay 2)Ce

—S3o( 272 )Cs+SEKo(Aur 2 ) D2 —SiKo(Amr2) D3=0
—Shtw J i 7 2) Az +-Shtn T pn?2) As—Sh s Y  pu?2) Be+S3pem Y1(ptm? ) Bs

+ Sl 237 2)Ca—S3nLi(Am72)Cs—Siu Ki(Aur2) Do-+-Stan Ky () D3=0

JoCumr D Ar—J o pur1 ) As— Yol pur 1 )Be+ 1o At 1 YOL— B 21 YCo— Ko Rt 1) D2 =0 48
~ptal et D As pae J i praa? D Azt e Vil piae DB+ 2 it DC — A L A7 1 DCo 423 K1 Ay DD =0
JoCpur2) As—J o m?2) As+ Yol pur2)Ba— Yol pmr 2)Bs+To(Aur2)Cs

—IyQAmr2)Cs+ Ko(Aur2)Dy—Ko( 2 2)D3=0
—~ ] \Cpnr 2D Aot paf 1 gt 2) As— pu Vi pu? 2)Bot pn Yi( 7 2) Ba+ 2 i 72 )C2

— 2,112, 72)Cs— 2 Ks(Aut 2D D+ 2, K1 (272 ) D3 =0
SiJoC R As+S2Y ol nR)B3+S3y( 2, RIC3+SKo(2mRID3=0
Jo(pmR) A5+ Yol R IB3+Io( 2 RICs+Ko(2,RID3=0

the fast and thermal groups.

The application of conditions (46) to the
general solutions (44) yields the following set
of equations in the ten unknowns, 4;,C,, 43,
B2, Cy, D3, A3, B;,Cs and D;, where the
boundary conditions (46) give B1=0 and D,=0.

The above set consists of ten simultaneous
algebraic equations with ten unknown con-
stants. Since these equations are homogeneous,
it is quite impossible to obtain the absolute
values for all the ten quantities and, as in all
the steady-state reactor problems, one con-
stant always remains undetermined there.
When it is possible to specify the shape of the
flux in a critical reactor, its magnitude
depends upon the operating power of the
system and is not determined by the group
equation. The only nontribial solution of the
above simultaneous equation requires that
determinant of the coefficients of A;, Ci, A,
Bz, Cz, Di, As, Bs, C;, and D; vanishes in
accordance with Cramer’s rule, Eq. (49).

This expression may be regarded as the
criticality condition (the conditon that there
should exist a steady flux) in the two-group

approximation. In the usual way, the speci-
fication of the fuel enrichment allows the
determination of the core size, or vice versa,
through the above equation. The prime impor-
tance in this paper is to determine the fuel
enrichment of the critical mass when the
shape and dimensions of the reactor are
specified and composition of the nonfuel com-
ponents in the core is given. The calculation
for the determination of this problem may be
carried out by assuming various fuel loadings
of different enrichment and finally selecting
the very fuel enrichment that satisfies all the
system requirements determined above.

7. The Numerical Calculation

The numerical calculation to solve the
given problem is performed by a digital com-
puter. In order to obtain #, and u, of the
uranium satisfying the determinant to be
zero, it is absolutely necessary to iterate the
computation procedure. Once the two values for
the fuel enrichment, #, and ), are assumed,
and all the nuclear parameters are computed,
then the corresponding values to g2, pf, 22
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and 14 may be obtained from the relation
(38e), (38f), (41e), (41f).

These values, along with the appropriate
data for the various functions,/,, Y., 1,, and K,,
may then be inserted in the determinant (49).
Should the value of the determinant be found
to be identically zero, the assumed fuel
enrichment, in fact, is, the critical mass
enrichment. If the value turns out to be other
than zero, the compution should be repeated
until this condition comes to be satisfied. It
should be recognized, however, that, in this
procedure, it is required to recompute the
nuclear parameters corresponding to the fuel
enrichment. Nevertheless, since these parame-
ters are to be independent of uranium enrich-
ment in the original assumption, it is not
necessary to make adjustments for these quan-
tities.

With all these factors in mind, numerical
calculation is carried out for the case of Kori
reactor geometry, of which dimension and other
parameters are given in Table 2. As described
in the Table 2, fast and thermal diffusion
coefficients for Kori reactor are 1.367 cm and
0.2294 cm, respectively, whereas the macro-
scopic cross-section is 0.03022 cm™!. So far as
the atomic density is concerned, that of
uranium which consists of U-235 atoms and
U-238 atoms is a.third of water and about a
half of oxygen atoms. The radii of each zone,
ri,7z and R, are 70.76cm, 100.01cm and
122.6 cm.

In order for a reactor to be just critical,
the ten-by-ten determinant must turn out to
be zero. As was previously made clear, the
minimum enrichment depends on the maximum
enrichment, or vice versa, providing that
the dimension of the three-zoned reactor, such
as 71,72 and R, is given. Conversely, r, and
7z are mutually dependent upon each other.

In this calculation, the minimum enrichment
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Table 2. Reactor constants

Diffusion coefficient, D,(cm) 6 %gﬁgman
Macroscopic cross-section,
51, (em™1] | 0.03922(fast)

(absorption--scattering)
Atomic density(atoms/cm®)

Uranium ;NU(= N 4 N**) 6. 994 X10%

Water; NHZ20 1. 947 X 10%

OCin UO2); N° 1. 399X10%
Radius, (cm)

Zone 1; n1 70.76

Zone 2; 72 100. 1

Zone 3; R 122. 6

is determined for a given maximum enrichment
#y so that the reactor goes critical when 71,7
and reactor radius are given. The geometrical
and nuclear data referred to herein are quoted
from PSAR® for the Kori Nuclear Power
Plant, APEX-369 and others?® 7%, and the
details are listed in Table 2. In order to bring
forth the results as accurate as possible, the
numerical calculation is repeated, iterating
the steps between the parameters Cum, iy, Am
and 1) and the determinant calculation.
Fig. 4 shows the computed results listed in
several pairs of the minimum-and-maximum-
enrichment combination making the concerned

Urnin % Criticel mety
Crelctive )
Lol - 2.

|
0.712
Net U)

1
'
]
I
I
i
]

2.2
v l
0.5 - [x2]
A
U‘mlo.s Lo 1 12 L3 L4 LS T
iimir ‘]oas 0.EC O7f C.65 0.6/ 058 056 {

1
t
I
[
i
I

-

(1 0.8 1.0 [ t2 1.3 L4 [ U may W

Fig. 4. Maximum »s. minimum enrichment
(Solid line represents the combination
of the maximum and minimum enrich-
ment, while the dotted line repre-
sents the relative critical mass for each
case)

_or minimum enrichment is given,
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determinant zero. It is possible from this rela-
tionship to find the maximum or minimum
enrichment which makes the minimum critical
mass in accordance with the derived theory
so far, when the ratio between the maximum
or when
either the maximum or minimum enrichment
is given in advance.

It is more than clear as described in Fig. 4
that the minimum enrichment of uranium
gradually decreases as the maximum enrich-
ment increases. For instance, the latter is
0.89% when the former is set as 0.9%, while
the latter is 0.80 when the former is given as
1.0. On the other hand, the minimum enrich-
ment turns out to be 0.71 if the maximum
enrichment is 1.1. In the same manner, the
minimum enrichments are calculated to be
0.65, 0.61, 0.58 and 0.56% if and when the
maximum enrichments are given in advance as
1.2, 1.3, 1.4 and 1.5%, respectively.

Since the critical mass is obtainable from
the relationship which is comprised of pairs of
the maximum and minimum enrichment, it

is able to find the least possible critical mass
among all the enrichment combinations in the
Fig. 4, and it is found to be the case of
1.2% for the maximum enrichment while
0.65% for the minimum enrichment, the reason
being that, so far as the relative critical
mass is concerned, this particular case is
most satisfactory. From the theoretical point
of view, and apart from the availability
of such enriched uranium, the combination of
the 1.2% maximum enrichment in the middle
zone and 0.65% minimum enrichment in inner
and outer zones is the most optimistic condi-
tion for the fuel loading. Nevertheless,
because the critical mass problem cannot be
the only factor to be considered in reactor
design, this problem must be correlated with
other factors such as power peaking, neutron
flux distribytjon, fuel economy, safety aspects,
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etc., so that the compound optimization might
be sought for in reasonable and logical way.

Mention must be made of the fact that,
when a power reactor reaches the end of its

cycle, many factors give negative effect to
that the critical mass

eventually increases more than the case of

the reactivity so

clean cold condition.

The factors which are associated with the
negative reactivity in the reactor at the end
of its cycle are as follows (in the case of Kori
reactor)16:1%20)

1. Control rods

2. Fission products, especially xenon and
samarium

3. Parastic capture by structural materials
such as cladding

4. Residual boric acid in the coolant which is
less than 10 ppm.

5. Doppler effect

(—1.0X107% to —1.6X107% Ak/k/g/cm?)

6. Moderator temperature coefficient

(0.3%X107* to —3.5x% 10™* Ak/k/°F)

7. Moderator pressure coefficient

(—0.3X107* to +3.5X107% Ak/k/psi)

8. Moderator density coefficient

(—1.10 to +0.30 Ak/k/g/cm?®)
9. Fuel depletion
10. Vertical leakage of neutrons.

The respective analysis of each component
listed above is beyond the scope of this work;
however, in the actual design of a reactor,
all the effects like the above should be given
thorough consideration so that the minimum
critical mass at the beginning of a fuel cycle
could be derived from the minimum critical
mass calculated in this paper. In such a sense,
the result of this work can be said to have
paved the way toward the calculation of
correct critical mass of a power reactor so
as to optimize the fuel loading at the beginning
of fuel cycle,

It is assumed at the beginning that %, is a
function of uranium enrichment and is not
enrichment itself, on the ground that:

512=(0 25 N2 Nothers aﬂathns)_—_(?‘ul_}_a)zu.

In the actual computer calculation, the va-
lues of ¥ and & come out to be as follows:

7 =0, N335 N258) =4 20077,
d==Nethers g others=() (280587 .

It is programmed upon the calculation that
the maximum enrichment is set as 1.6% at
first and then it is gradually reduced step-by-
step-wise (0.1% each per step) until the
determinant turns out to be zero, so that it

corresponds to the optimal combination of the
maximum and minimum enrichment.

Since it is practically impossible to find the
zero value by solving the determinant, it is
assumsed that the zero value must exist some-
where between the plus and minus values,
Therefore, the actual enrichment which makes
the value of the determinant zero is sought
by means of interpolating the computed two
values (in this case, one is plus and the other
is minns).

All other constants such as 2 and g as well
as coupling constants are also calculated with
the help of computer. On the other hand,
however, the Bessel functions are simply
quoted from the computer library. The com-
putation is actually iterated dozens of score
times to find each zero value. For the com-

puter program, please refer to the Fig. 5.
8. Conclusion

With the application of Pontryagrn’s maxi-
mum principle to the two-group equation, a
Hamiltonian is derived for a reactor model of
cylindrical geometry which is assumed to have
the physical dimension of Kori reactor. Then
the linear dependence of #(7) on the Hamil-
tonian comes to imply that #(r) is a step func~
tion. This linear dependence is ascribed to
the fact that only the macroscopic absorption
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ma

Reactor constants (Ref. to Table 2)
zonal radii (r;=70.76 r:=100.1, R=122.6)

r——q——l—.-—-— -
{  lteration

I
] IXX=1,7 |
| Ixy=r10 |

Umax=(.016—IXX X0, 001
Umix=0.01—-IXY 0.001

U=r{4. 20077 U" -F80. 0280587)
U’ =Umax or Umin

=8, 4091

a=0.81068 Keff

u and 1 (Ref. to Eq. 29)

Coypling Constants Calculation
_ (Ref. to Eq. 1)

ALL Library
Bessel and Modified Bessel Fungtion

Y

Elements. of Determinant Calculation
(Ref, to Eq. 49)

¥
-——————l Value of Determinant—]
T )

Results
Umax=0.9, 1.0, 1.1, 12 13, 1.4, L5
Umin=0.89, 0.80, 0.71, 0.65, 0.61, 0.58, 0.56

Fig. 5. Simplified flow chart for calculation
procedure

cross-section of U5 nuclides is linearly
dependent upon the enrichment and other
nuclear parameters do not depend on it. It is
clear that the strict assumption of all the
nuclear parameters may complicate the control
function #(r).

Unlike the previous works by others!=®,
the range of the minimum enrichment and that
of the maximum enrichment are not limited
in this paper: moreover, the range is deter-
mined from the critical condition, that is to
say, it is determined from the critical deter-

minant. It is proved that the theory developed
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herein is logical on the ground that the
computed results satisfy the necessary and
sufficient conditions of the theoretical analysis.
From the numerical calculation, several pairs
of the minimum-and-maximum enrichment
combination are obtained, which all make the
determinant zero, f.e., that satisfies the
critical condition so that the reactor in ques-
tion is able to go critical. Among all the
calculated values, the least possible critical
mass is found to be the case of 1.2% maxi-
mum enrichment and for the middle zone and
0.65% minimum enrichment for the inner and
outer zones. For more accurate analysis of
this problem it is recommendable to extend the
scope of work so that the consideration of
vertical axis may be taken into account and
the bounded power density problem may be
treated as well.

When and if these factors be made into
being, the optimization problem of other
subjects, such as power maximization, burn-up
maximization, refueling optimization, and the
like, could be conveniently achieved. It is
suggested as a further work in the future that
the zonal radii may be subject to changes of
the preset enrichment, or conversely, the
maximum enrichment or the minimum enrich-
ment may be set as a variable versus the
radius.

Since the reactor mode! referred to herein is
simply quoted from the dimension of Kori
reactor, all the nuclear design parameters
are not quantitatively analysed in the treat-
ment, though they are considered in lumped-
sum effect. In other words, since the approach
in this paper is based on the clean cold condi-
tion of the initial reactor, the calculation of
the minimum critical mass by means of the
maximum principle for the case of Kori
reactor model does not mean that the engineer-
ing design data could be accurately resulted
from this analysis.
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