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1. Introduction

Suppose we have a stationary first-order moving average model
)4
y,=2x,,~b,~+e,+de,_;, t=1, """ s T, (1)
=0

where [e,) is a series of independent normal variate with zero mean and finite variance
6%, |d| <1, b;s are unknown parameters of coefficients and (x,] is a series of known
variables. We are interested in obtaining the maximum likelihood estimators (MLE)
for unknown parameters; var(y,) =¢*(1+d?), correlation (4., ¥.1)=d/(1+d?) and b,s.
In the simplest case when p=0, Durbin(1959) proposed an efficient estimator for d
other than MLE because the likelihood function is a complicated form in d. He in-

troduced an approximated likelihood equation,

Tad—t(l—dz)'l(Zy:2—2d2ytym+2d22y¢y:+z— """ )]:O,

and found it as an unmanageable estimating equation. In this paper we represent thg_
exact likelihood equation in the orthogonally transformed model, and study about the
existence of solution for the likelihood equation. The uniqueness is demonstrated in
the cases of more than 40 sets of generated data among which few are presented in

the Appendix.

2. Notation and Useful Lemma
Matrices are denoted by capital Gothic letters; vectors(column) by lower case Gothic
letters; scalars by lower case Roman letters. Dimensions of matrices, when needed, are
written A(mxn). As usual A-! is the inverse of A. Sometimes in order to consider a

matrix in terms of its components a;;, we write A=(qe,;). For a matrix A(TxT), we
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denote the i-th characteristic root of A by h;=h;(A), with the ordering h;>--->k;.

D(k;) is to indicate the diagonal matrix with the given diagonal components (%, ---, k7).

The notation, L(x)=N{p, G), indicates that the random Tx1 vector x has a normal

distribution, i.e., x has the density function,

f(x)=(22) FIG| Fexp[— - (=) G (x—p) ],

where G is positive definite. First we present lemmas used in this paper.

Lemma 1.

{Proof)

Let M(TxT) be the matrix which has ones on the diagonals one element
removed from the main diagonal, and has zeros elsewhere, then M can be

decomposed as M=QDQ, where D(h}) is the TxT diagonal matrix with
. 1
hi(M)=2cos{jz/(T+1)] and Q(T xT)=(qs)=[2/(T+1)Zsin(jkx/(T+1)].

Shaman{1969) showed that hk;(M)=2cos(jz/(T+1)], j=I1, - ,T. Let

@'= (g, -+ , ¢ir)' be the characteristic vector associated with &, i.e.,
Mq'=h,q', j=1, - T, 2)
then we obtain
Qivr+ Qieri=hiGie J=1, =eer JT, k=1, e T, (3)
where qjo=¢jr.,=0. The associated polynomial equation for (3) has roots
ri=[hj+ (h?—4) %]/2 and 7, ={h;— (hj2—4)’12]/2. (4)
so that ' .
gn=i"—r)/ ria—rp), j=1, - W T, k=1, e , T. (%)
Substituting k;=2 cos(jz/(T+1)] into (4), we obtain
ri=explijz/(T+1)] and rj,=exp(—ijz/(T+1)], (6)

where i=+/—1. Because the characteristic vector is invariant under scalar

multiplication, we obtain from (5) and (6) that for any real number z,

__explijkz/(T+ 1)) —expl —ijkz/(T+ l)j____,_ sin(jkx/(T+1)]
In=2 explija/(T+1)J—expl—#jz/(T+1)] ~ ° sin(jz/(T+1)] "

Observing that

éx sin?(jkz/ (T+1)1=(T+1)/2,

we take z=(2/(T+1)TJsin(jz/(T+1)]), and obtain

gw=C2/(T+1) TEsinljkn (T+1)3, k=1, -, T, j=1, -, T.

and the proof follows immediately.

(Remark) From the resuit of lemma 1 it is straightforward to present a representation
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f [v(l+rM )]: other than the one proposed by Shaman(1969), namely,

2/v(T+1) Z’,(sm Iz‘]ffl SN —p— ]]‘Tl )/(1+2r cos—T{:_Ll).

Lemma 2. Let [ ” h,]T be a sequence of real numbers, then solving

Zs,/(1+xh)2h,/(1+xh)—TZsh,/(1+xh)2—0 (M

=l

for x#0 and for
le<EImaX(h,-)]“
<igT
is equivalent to solve
28/ (L+xh) 21/ A+ xh) =T si/ (L+xh) *=0. (8
{Proof) Observing that, for x=0,
Z‘_:h.‘/ (A+xh)=1/x) X(A—1/1+xh)I=T/x— (1/2) X1/ A +zh;),
and
Z'_j Sihi/ (L4 2hs) *= (1/x) 230si A+ xhy) —53/ (1 + xh;)
=(1/x) Zs:/ A+ xh) — (1/x) Zs:/ (1+2xh,) %,
it is easy to see that solving (7) for x is equivalent to solve
(/xT) X s/ 1+ xh) (T— X1/ A +xh)]
=1/0) s/ A +xh) — X s;(1+xh) %],
or
S/ (U xh) =) S/ (L) S1/ L+ xh)
Zj $i/ (1+xhy) = X5/ (L+xhi)?,

which proves the lemma.

3. Numerical Computation of MLE
The corresponding matrix form of our model (1) becomes
y=Xb+w, L(w)=N(o, G), 9
where G=v(I+rM), M is the matrix defined as in lemma 1, wv=var(y,), and
r=correlation (%, #...). To obtain MLE for (v, », b) numerically we first perform

an orthogonal transformatien,
y*=Qy, X*=QX, and w*=Qu,
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where @ is the matrix defined as in lemma 1. Our transformed model is then by
lemma 1,
y*=X*b+w*, Lw*)=Nlo, D{v(1+7rh)}],
where h;=2cos(iz/(T+1)], =1, , T, v>o and |7| <k~
The corresponding joint density function is then

f(, », b) wé:lv A+7h) 7 exp[——é——tr D{T(l——il-r—h,)—} S (b)].

where S(b)=(y*—X*b) (y*—X*b)’. To minimize —2 log f with respect to (v, r, b), we

obtain the likelihood equations;

(T/v) — (/99 };84 &)/ A+rh) =0, (10)
Z‘} hi/ L+7h;) — (1/v) Z s;(b) b/ (L +7hs)2=0, (11)
—2X*D(1/v(1+7h)] (y*—X*b) =0, 12)
where s;(b) =[S (b)J;;. Combining (10) and (11), we obtain
Z;: $; )Y/ (1 +7h) Z hi/ U +rh,) - T; $;(b) hy/ (1 +7h)2=0. 13

From the result of lemma 2, solving (13) for r is equivalent to solve
gwn)=215;b)/A+rh) X1/ (A+rh) =TXs: (b) /(A +rh;)2=0. (14)

For fixed b, let A
w, () =01/A+rh) )/ 21/ A+vhy), and a;(r) =S/ A +7h),

then solving (14) for 7 is equivalent to solve
z 1 & -
Zwi(a) =), Swl)=1 (15)

As r approaches from the left to —1/h, the values w,() and a,(+) become
.tremendously larger compared to other w;(r)’s and a;(r)’s respectively so that for such r
;we have g(r) >0. Similarly as » approaches from right to +1/k,, wy(r)a,(») dominates.
Le, g(r)>0 at the two end points in the open interval (—1/h,, +1/h;). Observing
that g(0) =0 and

dg ) —
—~dr r_o—TZS;hn (16)

which is zero with probability zero, we know that the existence of r=0 satisfyving
(14) is trivial. At this moment the uniqueness part is unfortunately not proved.
However, for the 40 sets of generated data we observe that g (r) 1s monotonically
decreasing on (—1/hy, L) and increasing on [L, +1/k;), where L<0 is the minimum

of g, and that the solution is unique.
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3-1. Computational Method
Our computer program fo solve the system of likelihood equations, (14), (10) and
(12), operates according to the following rule: At the k-th iteration, if 21 s;(b)k;>0
then we trace to find the negative root, say 7, of the funcion g. The value of y, is
then uniquely determined by (10). For such (r; v,), we obtain the unique b,., from
(12). If X s;(b) k<0 then we take similar procedure for the positive 7,. This iterated

procedure is terminated at the k-th stage if

P P I TR P R Py |<e an

max[max
1<i<p [ba-al [7s-1] | V1]

where ¢ is preassigned small positive number (we take ¢=10-%). For all the 40 cases
of generated data we find the number of iteration required to satisfy (17) is very small.
3-2. Comparison in the Special Case.
Let 7 is MLE for ». If |#|<1/2 then the invariant property of MLE implies that

d

AT (18)
where d is MLE for d. From (18) we obtain
d= [1 — (1—47Y %] /27, (19)

In the case of b=0, we compare d, the MLE of & obtained from (19) and the efficient
estimate Durbin (1959) proposed, namely,

~. k=1, ko

d=—goldli+l/§,lzb 2k<T,
where ([,] is the sequence of least square estimates of coefficient when our model is

approximated with finite autoregressive representation, i.e., {/,] minimizes

T
Z (yt—llyt—l_' """ '—lkyt—t) 2,

t=k+1

The numerical comparison is presented ‘in the Appendix for a set of generated data.

APPENDIX

(1) The random created data for T=43 according to the model,
Yy, =e,+de,,,

where ¢, were drawn from N0, 36) and d=0.5 are:
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0.99 , 220 -4.5% -1.78 ~-0.35 412 -6.68 1.19 3.50 5.94
-2.66 2.44 3.8 -~7.20 0.05 5.73 0.41 —4.29 -—-18.056 -9.87
0.75 —6.24 -7.34 475 0.8¢4 -2.23 0.25 523 1.4 19.47
11.67 1.30 5.8 474 10.53 —-0.42 -10.67 --3.42 -—8.40 -~12.34

—5.91 —4.84 6.54
The estimates are:

7=0. 424346, 7=34. 42455, d=0. 555103 (MLE),

g

0. 424346

/
\-——

d=0. 417507 (Durbin).
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(2) The following data is the demand for money series.
3.0 387 367 39.5 394 449 41.6
8.6 507 557 6L2 64.7 683 714

101.5 109.2 121.0 1315 136.9 151.2 1741
251.4 236.5 250.9 275.0 306.5 296.9 300.1
380.5 463.8

The estimates (when b=0) are:
7=0. 500936, and 7=28484. 611

(3) The created data for T=11 according to the model,
y‘=bo+b1X‘+eg+deg..l,

0. 50127

[ 4

~3

43.0 451 48.1
78.6 84.2 916
177.6 1921 226.1
342.6 360.9 3957.3

where ¢, were drawn from N, 0.1), b,=0.3, ,=0.4, d=—0.5 and given [X,] are

as follow :

X, 117 124 1.37 1.47 154 1.63 176 1.92 214 2.31 2.48
Y, 0.83 077 0.89 1.00 1,08 1.04 1.14 1.19 1.3¢4 1.34 137
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The estimates are:

-~ P

stage by b, 7 7
0 0.0 0.0 0. 509127 0. 813577
1 0. 265984 0. 491840 0. 323700 0. 002480
2 0. 302694 0. 454691 0. 255736 0. 001948
3 0. 299193 0. 456637 0. 254116 0. 001946

4 {final) 0. 299110 0. 456685 0. 254109 0. 001945
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SUMMARY

In the first-order moving average model, we present the exact likelihood equations
as function of variance, correlation and parameters of coefficients in the orthogonally
transformed model. Existence of maximum likelihood estimates for these unknowns
are studied and a computational method is provided. (Because of the limited space
we do not present the computer program which is written in FORTRAN.) 40 sets of
generated data and economic data are used to demonstrate, and few of them are

presented in the Appendix. A numerical comparison of MLE with the efficient estimate
proposed by Durbin is presented in the particular case.



