ON SEMI-SIMPLE RINGS AND THEIR COMPLETE MATRIX RINGS

BY HAI JOON KIM

1. Introduction.

Let R be a ring and M be a right R-module. In this paper we consider the class of all large submodules of M and denote their total intersection by $S(M)$. In section 2, we prove $S(M)$ coincides with the sum of all simple submodules of M, the largest semi-simple submodule in M. Applying this result to an arbitrary ring R whether or not R contains the identity 1, we prove that the complete matrix ring R_n of all $n \times n$ matrices over R is semi-simple if the ring R is semi-simple as a right R-module R_R. This proof is given in Section 3. We also investigate semi-simple right ideals of R and R_n and study their relations.

2. Preliminaries.

We call a submodule P of M large in M and write $P \leq M$ in case each non-zero submodule of M meets P. The aim of this section is to prove that $S(M)$ coincides with the sum of all simple submodules of M and to seek a necessary and sufficient condition for a module to be semi-simple.

First, we introduce the definition:

DEFINITION. A submodule N of M is closed if and only if N has no proper large extensions in M.

If $M_P \supseteq P_{R_R}$, then C is called a complement submodule of P in M in case C is a submodule which is maximal in the set of all submodules Q such that $Q \cap P = 0$. By Zorn's lemma, if $P \cap A = 0$, then there exists a complement submodule of P in M containing A. By a complement submodule we mean a submodule which is a complement submodule of some submodule of M. It is easy to see that the closed submodules of a module M coincide with the complement submodules of M. By this fact, P is large in M if and only if P meets every non-zero closed submodule of M. For, if $P \cap K = 0$, then we can choose a complement (=closed) submodule C of P containing K. If P meets every non-zero closed submodule, then $C = 0$, since $C \cap P = 0$ and so $K = 0$. This shows that P is large in M. From this we prove the following lemma:

LEMMA 1. Let A and B be submodules of M. Then B is large in A if and only if there exists a large submodule P of M such that $B = A \cap P$.

Proof. Assume that $B \leq A$ and K be a complement submodule of B in M. Put $P = B + K$. Since $B \cap (A \cap K) = B \cap K = 0$ and $A \cap K = 0$, $A \cap P = A \cap (B + K) = B \cap (A \cap K) = B$. Let D be a submodule of M with $P \cap D = 0$. Then also $B \cap (K - D) = B \cap (P \cap (K - D)) = B \cap (K - D) = B \cap K = 0$. By maximality of $K, D \leq K$, hence $D = (B + K) \cap D = 0$. Thus
Let P be large in M. If P is large in M, then $P \cap A$ is large in A for every submodule A of M. This proves that B is large in A if $B = A \cap P$ where P is large in M.

Let N be any submodule of M. We consider $S(N)$ in N, that is, the intersection of all large submodules of N. Then the following relation holds between $S(N)$ and $S(M)$.

Theorem 1. $S(N) = S(M) \cap N$.

Proof. By Lemma 1, \(\{ P \cap N : P \subseteq M \} = \{ Q : Q \subseteq N \} \) for any submodule N of M. It follows that

\[
S(M) \cap N = \bigcap \{ P : P \subseteq M \} \cap N \\
= \bigcap \{ P \cap N : P \subseteq M \} \\
= \bigcap \{ Q : Q \subseteq N \} \\
= S(N).
\]

Let $f : M \rightarrow M'$ be an epimorphism and P' be large in M'. Then $f^{-1}P' \cap A = 0$ implies $P' \cap fA = 0$ so that $0 = fA \subseteq P'$. Thus $A \subseteq f^{-1}fA \subseteq f^{-1}P' \cap A = 0$, so $f^{-1}P'$ is large in M. Hence we obtain the following corollary:

Corollary 1. (1) Let f be an R-homomorphism of M into M'. Then $fS(M) \subseteq S(M')$.

(2) If N is a submodule of M, then $(S(M) + N) / N \subseteq S(M/N)$.

Proof. (1): Let $y = fx$, $x \in S(M)$, and let Q be an arbitrary large submodule of fM. Since $f^{-1}Q$ is large in M, $x \in f^{-1}Q$ so that $y = fx \in Q$. Hence $fS(M) \subseteq S(fM) \subseteq S(M')$.

(2) is an immediate consequence of (1).

We call a module M is semi-simple if M is a direct sum of simple submodules. It is the same thing to require that each submodule of M is a direct summand of M [1, p.55].

Corollary 2. M is semi-simple if and only if $S(M) = M$. Therefore $S(M)$ is the largest semi-simple submodule of M.

Proof. Assume that M is semi-simple and let A be any non-zero simple submodule of M. Then for each large submodule P of M, $A \cap P \neq 0$ so that $A = A \cap P \subseteq P$. Thus $A \subseteq S(M)$ and $M = S(M)$. Conversely, if A is a submodule of M and B is any complement submodule of A in M, then $A \oplus B$ is large in M and $S(M) = M$ implies $S(M) \subseteq A \oplus B = M$ so that A is a direct summand of M. Hence M is semi-simple. By Theorem 1, $S(S(M)) = S(M) \cap S(M) = S(M)$ and $S(M)$ is semi-simple by the above result. If a submodule P is semi-simple, then $P = S(P) = P \cap S(M) \subseteq S(M)$. Therefore $S(M)$ is a semi-simple submodule of M which contains every semi-simple submodule.

Immediately, we have:

Corollary 3. The total intersection $S(M)$ of all large submodules of M is the sum of all simple submodules of M.

It is easy to give an example for $S(M/S(M)) \neq 0$. But under some conditions we can get $S(M/S(M)) = 0$. If $M = S(M)$, it is clear. Now assume that $M \neq S(M)$ and we prove $S(M/S(M)) = 0$ if $S(M)$ is closed in M. Let P be a simple submodule of $M = M/S(M)$. Since there is a 1:1 correspondence between submodules of M and submodules of M containing $S(M)$, either $P = S(M)$ or there are no submodules between P and $S(M)$.
where P is an inverse image of \bar{P} by a projection map. If $S(M)$ is not large in P, then, since $S(P) = P \cap S(M) = S(M)$, P is the only submodule which is large in P, contradicting to $S(P) = S(M)$. So $S(M)$ is large in P. Thus we have the following:

Corollary 4. If M is a module in which $S(M)$ is closed, then $S(M/S(M)) = 0$.

3. Semi-simple rings.

We now turn our attention to a ring R regarded as right R-module R^n. We call a right ideal K (hence a right R-module) of R simple in case the only right ideals of R contained in K are 0 and K itself; K is semi-simple if it is the sum of simple right ideals. In this section we characterize simple right ideals and semi-simple right ideals of a ring R with the identity 1 and of the complete matrix ring R_n of all $n \times n$ matrices over R. Using these results and applying the results obtained in Section 2, we prove that for any ring R (whether or not R contains 1) $S(R_n) = (S(R))_n$ and also prove that if a ring R is semi-simple as a right R-module R^n, then so is its complete matrix ring R_n. First we consider a ring R with the identity 1. To avoid the complexity we employ the following notations: For each right ideal K of R, and each $p = 1, 2, \ldots, n$, write

$$K(p) = \{A = (a_{ij}) \in R_n : a_{ij} = 0 \text{ if } i \neq p, a_{pj} \in K, j = 1, 2, \ldots, n.\}$$

and for each right ideal K of R_n, and each p, put $K_{(p)}$ as follows:

$$K_{(p)} = \{a \in R : a = a_{p1} \text{ for some } A = (a_{ij}) \text{ in } K\}.$$

First, we prove that $K_{(p)}$ and $K_{(p)}$ are right ideals of R_n and R respectively.

Lemma 2. For each $p = 1, 2, \ldots, n$, $K_{(p)}$ and $K_{(p)}$ are right ideals of R_n and R respectively. Furthermore $K_n = \sum_{p=1}^{n} K_{(p)}$ and $K = \sum_{p=1}^{n} (K_{(p)})_n$.

Proof. We denote the matrix units of R_n by E_{ij}. Let $A = (a_{ij})$ and $B = (b_{ij})$ in $K_{(p)}$ and $C = (c_{ij})$ be an arbitrary element of R_n. Then $A - B = (a_{ij} - b_{ij})$ and $a_{ij} - b_{ij} = 0$ if $i \neq p$ and $a_{pj} - b_{pj} \in K$ for each j, so that $K_n(p)$ is closed under subtraction. For each $r, s = 1, 2, \ldots, n$, $A(c_{rs} E_{rt}) = (\sum_{i=1}^{n} a_{ij} E_{ij})(c_{rs} E_{rt}) = \sum_{i=1}^{n} a_{ij} c_{rs} E_{rt}$ is a matrix whose i-th rows are all zero if $i \neq p$ and $a_{pj} c_{rs} \in K$. But AC is a sum of such matrices, and therefore $AC \in K_n(p)$. This proves $K_n(p)$ is a right ideal in R_n. Furthermore, it is easy to check $K_n = \sum_{p=1}^{n} K_{(p)}$. Next we will show that $K_{(p)}$ is a right ideal in R $(p = 1, 2, \ldots, n)$ and $K = \sum_{p=1}^{n} (K_{(p)})_n$. Since K is closed under addition (and subtraction), the same is true for $K_{(p)}$. Let a in $K_{(p)}$, and $r \in R$. Then by definition of $K_{(p)}$, there exists a matrix $A = \sum a_{ij} E_{ij}$ in K with $a_{p1} = a$. Since a matrix $A(r E_{11}) = \sum a_{ij} r E_{11}$ is in K and its $(p, 1)$-position element is $a_{p1} r = ar, ar \in K_{(p)}$. Thus $K_{(p)}$ is a right ideal in R. Let $A = \sum a_{ij} E_{ij}$ be any element of K. Then for any $q = 1, 2, \ldots, n$, $B = AE_{q1} = (\sum a_{ij} E_{ij}) E_{q1} = \sum a_{iq} E_{q1}$ is a matrix in K whose $(p, 1)$-position element is a_{pq}. This is true for each $p = 1, 2, \ldots, n$, and therefore $a_{pq} \in K_{(p)}$ for each q. Since $a_{pq} E_{pq} \in (K_{(p)})_n$ and $A = \sum_{p=1}^{n} a_{pq} E_{pq} \in (K_{(p)})_n$, it
Hai Joon Kim

follows that K is contained in $\sum_{i=1}^{n}(K_{i})_{n}$. This completes the proof of lemma.

Theorem 2. If K is a simple right ideal of R, then $K(p)$ is a simple right ideal of R_{n} for each $p=1,2,\ldots,n$, and therefore K_{n} is semi-simple in R_{n}.

Proof. Let N be a right ideal of R_{n} such that $N \subseteq K_{n}(p)$. Then $N(p)$ is a right ideal of R satisfying $(N(p))_{n}(p)=N$. For, if $A=(a_{ij}) \subseteq N$, then $AE_{ij}=\sum_{i}a_{ij}E_{i1}=a_{p1}E_{p1} \subseteq N$ and $a_{p1} \subseteq N(p)$ for each j. It follows that $A \subseteq (N(p))_{n}(p)$ and hence $N \subseteq (N(p))_{n}(p)$. Suppose now that $A \subseteq (N(p))_{n}(p)$ and let us show that $A \subseteq N$. Let $a=a_{p1}$ be an element in the (p,j)-position of A. Then there exists a matrix $B=(b_{ij}) \subseteq N$ with $b_{p1}=a$. Since $BE_{ij}=\sum_{i}b_{ij}E_{i1}=aE_{p1} \subseteq N$, $A=\sum_{i}a_{p1}E_{p1} \subseteq N$ and so $(N(p))_{n}(p)=N$. Since $N \subseteq K_{n}(p)$, $N(p) \subseteq K$ and since K is simple, either $N(p)=0$ or $N(p)=K$. i.e., $N=0$ or $N=K_{n}(p)$. This proves that $K_{n}(p)$ is simple and since $K_{n}=\sum_{i=1}^{n}(K_{i})_{n}(p)$ is a direct sum of simple right ideals, K_{n} is semi-simple.

Now the following lemma can be proved straightforwardly, so the proof will be omitted.

Lemma 3. If $K=\sum_{i=1}^{\infty}K_{i}$ is a sum of right ideals of R, then $K_{n}(p)=(\sum_{i=1}^{\infty}(K_{i})_{n}(p)=\sum_{i=1}^{\infty}(K_{i})_{n}(p)$.

Corollary 5. If K is semi-simple in R, then so is $K_{n}(p)$ for each $p=1,2,\ldots,n$.

Proof. Write $K=\sum_{i=1}^{\infty}K_{i}$ where K_{i} is simple in R. Then by Theorem 2, for each $i \in I$, $(K_{i})_{n}(p)$ is a simple right ideal of R_{n}. Since $K_{n}(p)=\sum_{i=1}^{\infty}(K_{i})_{n}(p)$ is a sum of simple right ideals, $K_{n}(p)$ is semi-simple for each $p=1,2,\ldots,n$.

Since, for each right ideal K of R, we have $K_{n}=\sum_{p=1}^{n}K_{n}(p)$, we obtain the following corollary:

Corollary 6. If K is semi-simple in R, then so is K_{n} in R_{n}.

Theorem 3. If R is a ring with the identity 1, then $(S(R))_{n}$ is semi-simple in R_{n}.

Proof. Write $S(R)=\sum_{i=1}^{\infty}K_{i}$ where K_{i} are simple right ideals of R. Then $(S(R))_{n}(p)=$ $\sum_{i=1}^{\infty}(K_{i})_{n}(p)$ and each $(K_{i})_{n}(p)$ is simple by Theorem 2, so that $(S(R))_{n}(p)$ is semi-simple. But $(S(R))_{n}=$ $\sum_{i=1}^{\infty}(S(R))_{n}(p)$ is a sum of semi-simple right ideals in R_{n}, and therefore $(S(R))_{n}$ is semi-simple.

We know that $S(M)$ is the largest semi-simple submodule of M by Corollary 2. Therefore $(S(R))_{n}$ is contained in $S(R_{n})$ by the above result. To prove the converse inclusion, we need the following lemma:

Lemma 4. If K is a simple (resp. large) right ideal of R_{n}, then there exists a semi-simple (resp. large) right ideal K of R such that $K_{n} \subseteq K_{w}$.

Proof. Consider a right ideal $K_{(p)} \subseteq \{a \in R : a=a_{p1} \text{ for some } A=(a_{ij}) \subseteq K\}$ and let $K=$
Then by Lemma 2, \(K \) is a right ideal of \(R \) such that \(K \subseteq K_n \). First assume that \(K \) is simple and we show that \(K_{(p)} \) is simple in \(R \). For this purpose, let \(N_{(p)} \) be a right ideal of \(R \) such that \(N_{(p)} \subseteq K_{(p)} \) and let \(N=(N_{(p)})_n+\sum_{i \neq p} R_{(i)} \), that is, any matrix \(A=(a_{ij}) \) in \(N \) is of the form: for each \(j=1, 2, \ldots, n \), \(a_{pj} \in N_{(p)} \) and if \(i \neq p \), then \(a_{ij} \) is an arbitrary element of \(R \). We note that \(N \cap K=\{A \in K : A=(a_{ij}), a_{pj} \in N_{(p)} \text{ for each } j\} \). Since \(K \) is simple, it follows that \(N \cap K=K \) or 0 and so \(N_{(p)}=K_{(p)} \) or \(N_{(p)}=0 \), that is, \(K_{(p)} \) is simple for each \(p=1, 2, \ldots, n \). Thus \(K \) is a semi-simple right ideal of \(R \) such that \(K \subseteq K_n \). If \(K \) is large in \(R_n \), then \(K \) is also large in \(R \) since \(K \subseteq K_n \). For, if \(P \) is a right ideal of \(R \) such that \(K \cap P=0 \), then \((K \cap P)_n=K \cap P_n=0 \) so that \(P_n=0 \) and \(P=0 \). This completes the proof of lemma.

The following result is an immediate consequence of Lemma 4 and Theorem 3.

Corollary 7. If \(R \) is a ring with the identity 1, then \(S(R_n)=(S(R))_n \).

Now we prove the following theorem which is a generalization of the above result.

Theorem 4. For any ring \(R \), \(S(R_n)=(S(R))_n \).

Proof. If \(1 \in R \), then it is through. If \(1 \notin R_n \), then we imbed \(R \) into the ring \(R' \) with the identity 1 as an ideal and by the case already proved we have \(S(R')=S(R')_n \). Theorem 1 then shows that \(S(R)=S(R') \cap R \). Since \(R_n \) is an ideal in \(R_n \), we can again apply Theorem 1 and obtain

\[
S(R_n)=R_n \cap (S(R'))_n=(R \cap S(R'))_n=(S(R))_n.
\]

This completes the proof of the theorem.

By the above theorem, we can prove the following theorem which is the main result of this section.

Theorem 5. If a ring \(R \) is semi-simple as a right \(R \)-module \(R_n \), then so is \(R_n \).

Proof. Theorem 4 ensures that \(S(R_n)=(S(R))_n=R_n \) if \(R \) is semi-simple. Therefore \(R_n \) is also semi-simple by Corollary 2.

References

Korean Military Academy