ON THE CATEGORY OF VECTOR LATTICES

By Dong Sun Shin

1. Introduction

Let E be a vector lattice and M be a lattice ideal of E. Then we obtain the quotient vector lattice E/M and a lattice homomorphism $p:E\to E/M$. The purpose of the present paper is to show that

(a) Every lattice homomorphism on a vector lattice E with kernel M has an image isomorphic to E/M, and

(b) $p:E\to E/M$ is a universal element for a suitable functor (cf. Theorem 2).

For the terminologies used in the present paper we refer to the papers [3] and [4].

2. Preliminaries

An ordered vector space is a real vector space E equipped with a transitive, reflexive, antisymmetric relation satisfying the following conditions:

1. If x, y, z are elements of E and $x \leq y$, then $x + z \leq y + z$

2. If x and y are elements of E and a is a positive real number, then $x < y$ implies $ax \leq ay$.

The positive cone (or simply the cone) K in an ordered vector space E is defined by $K = \{x \in E, x \geq 0\}$, where 0 denote the zero element of E. The cone K has the following "geometric" properties:

1. $K + K \subseteq K$,

2. $\alpha K \subseteq K$ for each real number $\alpha > 0$, and

3. $K \cap (-K) = \{0\}$.

If K is a subset of a real vector space E satisfying (c1), (c2) and (c3), then $x \leq y$ if $y - x \in K$ defines an order relation on E with respect to which E is an ordered vector space with positive cone K.

A subset K of E containing zero element and satisfying (c1) and (c2) is called a wedge.

Definition 1. An ordered vector space (E, \leq) is called a vector lattice if and only if for each x and y in E there is a unique supremum of x and y in E.

Definition 2. A linear subspace M of a vector lattice E is called a lattice ideal if $y \in M$ whenever $x \in M$ and $|y| \leq |x|$.

Definition 3. A linear mapping f on a vector lattice E to another vector lattice F is a lattice homomorphism if and only if $f(x \land y) = f(x) \land f(y)$ for all x and y in E.

A one-one (into) lattice homomorphism is called a lattice isomorphism.

If M is a linear subspace of a vector space E ordered by a cone K, the image $C = p(K)$ of K under the canonical quotient mapping $p:E\to E/M=F$ is a wedge in E. However C is not a cone in general, even if E is a vector lattice and M is a sublattice of E. The next result shows that a much better order theoretic correspondence between E
and \(F \) is valid if \(M \) is a lattice ideal.

Proposition 1. If \(E \) is a vector lattice and \(M \) is a lattice ideal in \(E \), the quotient space \(F = E/M \) is a vector lattice for the order structure determined by the canonical image \(C \) in \(F \) of the cone \(K \).

Proof. Refer to [4], p. 37.

By the proposition 1 we obtain a vector lattice \(E/M \). This vector lattice \(E/M \) is called the quotient vector lattice of \(E \) by its lattice ideal. The canonical mapping \(p: E \rightarrow E/M \) may be described as the function assigning to each \(x \in E \) the unique \(M+x \).

In the following proposition 2 the canonical mapping \(p: E \rightarrow E/M \) of vector lattice \(E \) onto the quotient vector lattice \(E/M \) is a lattice homomorphism.

Proposition 2. For a vector lattice \(E/M \) the canonical mapping \(p: E \rightarrow E/M \) is a lattice homomorphism, where \(M \) is a lattice ideal in \(E \).

Proof. Refer to [1], p. 525.

3. Theorems

The vector lattice \(E/M \) can be characterized by the following theorem of the lattice homomorphism \(p: E \rightarrow E/M \):

Theorem 1. For each lattice homomorphism \(\phi: E \rightarrow F \) of vector lattices with \(\phi(M) = 0 \), where \(M \) is a lattice ideal in a vector lattice \(E \), there is a unique lattice homomorphism \(\phi': E/M \rightarrow F \) such that \(\phi = \phi' \circ p \).

Proof. The situation in the theorem is as indicated in the diagram below:

\[
\begin{array}{c}
E \\
\phi \downarrow \\
E/M \\
\phi' \downarrow \\
F
\end{array}
\]

Given the lattice homomorphisms \(\phi \) and \(p \), it suffices to find a lattice homomorphism \(\phi' \) in such a way that the diagram commutes.

If we define \(\phi'(M+a) = \phi(a) \), then \(\phi' \) is well defined. In fact, if \(M+a = M+b \) \((a, b \in E)\), then \(M+ (a-b) = 0 \), which implies that \(a-b \in M \). Hence \(\phi(a-b) = 0 \). Since \(\phi \) is linear, \(\phi(a) = \phi(b) \). Therefore, \(\phi'(M+a) = \phi'(M+b) \).

\(\phi' \) carries all the elements of \(M+a \) to a single element \(\phi(a) \) of \(F \). This means that there is a unique function \(\phi' \) on \(E/M \) to \(F \) with \(\phi' \circ p = \phi \).

This function \(\phi' \) is a linear mapping, since for any \(M+a, M+b \) in \(E/M \) \((a, b \in E)\) and for any scalar \(\lambda \),

\[
\phi'[(M+a) + (M+b)] = \phi'[M + (a+b)] = \phi(a + b) = \phi(a) + \phi(b) = \phi'(M+a) + \phi'(M+b),
\]

\[
\phi'[\lambda(M+a)] = \phi(M + \lambda a) = \phi(\lambda a) = \lambda \phi(a) = \lambda \phi'(M+a).
\]

To show that \(\phi' \) is a lattice homomorphism, we need only show that for any \(M+b \)
and \(M + a \) in \(E/M \) \((a, b \in E)\), we have
\[
\phi'[(M+a) \vee (M+b)] = \phi'(M+a) \vee \phi'(M+b).
\]
Since \(\rho \) and \(\phi \) are lattice homomorphisms,
\[
(M+a) \vee (M+b) = \rho(a) \vee \rho(b) = \rho(a \lor b) = M + (a \lor b).
\]
Hence \(\phi'[(M+a) \vee (M+b)] = \phi'[(M+a) \lor (M+b)] = \phi(a \lor b) = \phi'(M+a) \lor \phi'(M+b) = \phi'(M+M) \).
This completes the proof.

For each lattice homomorphism \(\phi: E \to F \) the kernel of \(\phi \) is a lattice ideal of \(E \) (cf., [1], p. 525). Therefore we have the following corollary:

Corollary. For the above lattice homomorphism \(\phi': E/M \to F \), \(\phi' \) is a lattice isomorphism if \(\phi: E \to F \) is a lattice homomorphism of vector lattice with kernel \(M \).

Proof. To show that \(\phi' \) is a lattice isomorphism we need only show that \(\phi' \) is one-one. If \(\phi'(M+a) = \phi'(M+b) \) for any \(M+a, M+b \in E/M \), then \(\phi(a) = \phi(b) \), which means that \(a - b \in M \). Therefore \(M+a = M+b \). Hence \(\phi' \) is a lattice isomorphism.

We now construct the category of vector lattices. Let the object be a vector lattice and let "hom" be the function with hom \((E, F) = \{ \phi | \phi: E \to F \) is a lattice hom.;

Since each identity \(1_E: E \to E \) is a lattice homomorphism of vector lattice \(E \), and since the composite of two lattice homomorphisms of vector lattices is again a lattice homomorphism, these data do determine a category of vector lattices.

Let \(X \) be the category of vector lattices and let \(Y \) be the category of sets. For each vector lattice \(F \) and a fixed vector lattice \(E \), we define \(\mathcal{F} \) as follows:
\[
\mathcal{F}(F) = \text{hom}(E, F) = \{ \phi | \phi: E \to F \text{ is a lattice hom.} \};
\]
and for each lattice homomorphism \(f: S \to T(S, T \subseteq X) \),
\[
\mathcal{F}(f): \mathcal{F}(S) \to \mathcal{F}(T)
\]
\[
\mathcal{F}(f) \alpha = f \circ \alpha \quad \text{for any} \quad \alpha \in \mathcal{F}(S).
\]
Then we have a covariant functor \(\mathcal{F} \) from \(X \) into \(Y \).

For a lattice ideal \(M \) of a fixed vector lattice \(E \), we define \(\mathcal{F}_M \) as follows:
\[
\mathcal{F}_M(F) = \{ \phi | \phi: E \to F \text{ is a lattice hom., and } \phi(M) = 0 \};
\]
and for each lattice homomorphism \(f: S \to T(S, T \subseteq X) \),
\[
\mathcal{F}_M(f) = \mathcal{F}(f).
\]
Then \(\mathcal{F}_M \) is a subfunctor of \(\mathcal{F} \).

Therefore we obtain the following result from the above discussions and Theorem 1.

Theorem 2. The subfunctor \(\mathcal{F}_M \) of the covariant functor \(\mathcal{F} \): \(X \to Y \) has a universal element \((\rho, E/M) \).

References

Ewha Woman's University