A NOTE ON \mathcal{R}-SPACES

By M.K. Singal and Pushpa Jain

In [10] O'Meara has introduced a new class of topological spaces, called \mathcal{R}-spaces. Following him, a regular T_1 space with a σ-locally finite k-network is called an \mathcal{R}-space. A collection \mathcal{F} of subsets of X is said to be a k-network for X if for each compact subset K of X and each open subset U of X containing K there exists a finite union R of members of \mathcal{F} such that $K \subset R \subset U$. \mathcal{F} is said to be a pseudobase if for each compact subset K of X and each open subset U of X containing K there is a $B \in \mathcal{F}$ such that $K \subset B \subset U$. \mathcal{F} is said to be a network for X if for each $x \in X$ and each open subset U of X containing x, there is a $B \in \mathcal{F}$ such that $x \in B \subset U$. A space X with a countable pseudo-base is called an \mathcal{R}_0-space by Michael [7], whereas a space X with a closed σ-locally finite network is called a σ-space by Okuyama [13]. The class of all σ-spaces contains the class of all \mathcal{R}_0-spaces, and all subparacompact spaces (that is, spaces with the property that every open covering has a σ-discrete closed refinement).

In [10,11] properties of \mathcal{R}-spaces parallel to \mathcal{R}_0-spaces have been obtained. In the present note some sum theorems for \mathcal{R}-spaces have been given. It is also proved that the image of an \mathcal{R}-space under a perfect mapping is an \mathcal{R}-space.

In the end, we obtain a sufficient condition for an invertible space to be an \mathcal{R}-space. Simple extension due to Levine [12] has also been considered for \mathcal{R}-spaces.

We shall first prove the locally finite sum theorem for \mathcal{R}-spaces which states the following:

Theorem 1. If $\{F_\alpha : \alpha \in \Omega\}$ is a locally finite closed covering of X such that each F_α is an \mathcal{R}-space, then X is an \mathcal{R}-space.

Proof. Since each F_α is a regular T_1 space, therefore X is a regular T_1 space. Thus we shall only prove that X has a σ-locally finite k-network if each F_α...
has a σ-locally finite k-network. For each $\alpha \in \Omega$ let $\mathcal{Y}_{\alpha} = \bigcup_{n=1}^{\infty} \mathcal{Y}_{\alpha}^{n}$ be a σ-locally finite k-network for F_{α}, where each \mathcal{Y}_{α}^{n} is locally finite in F_{α} (and hence in X). Then $\mathcal{Y} = \bigcup_{n=1}^{\infty} \mathcal{Y}_{n}$, where $\mathcal{Y}_{n} = \bigcup_{\alpha \in \Omega} \mathcal{Y}_{\alpha}^{n}$ is a σ-locally finite k-network for X.

For, let K be a compact subset of X and U an open subset of X such that $K \subseteq U$. Since every locally finite family is compact finite (that is, every compact subset intersects at most finitely many members of the family), therefore K intersects at most finitely many F_{α}'s say $F_{\alpha_{1}}, F_{\alpha_{2}}, \ldots, F_{\alpha_{k}}$. Thus $K = \bigcup_{i=1}^{k} (K \cap F_{\alpha_{i}}) \subseteq U$. For each $i = 1, 2, \ldots, k$, $K \cap F_{\alpha_{i}}$ is a compact subset of $F_{\alpha_{i}}$ which is contained in an open subset $U \cap F_{\alpha_{i}}$ of $F_{\alpha_{i}}$. Let R_{i} be a finite union of members of $\mathcal{Y}_{\alpha_{i}}$ such that $K \cap F_{\alpha_{i}} \subseteq R_{i} \subseteq U \cap F_{\alpha_{i}} \subseteq U$. Therefore, $\bigcup_{i=1}^{k} R_{i}$ is a finite union of members of \mathcal{Y} such that $K \subseteq \bigcup_{i=1}^{k} R_{i} \subseteq U$. Hence \mathcal{Y} is a σ-locally finite k-network.

COROLLARY 1. Every disjoint topological sum of \mathbb{R}-spaces is an \mathbb{R}-space.

It has been proved by Hodel [3] that for any topological property P which is closed hereditary (that is a property, which when possessed by a space, is possessed by every closed subset of it) and which satisfies the locally finite sum theorem, the following theorems are true.

THEOREM 2. If \mathcal{Y} is a σ-locally finite open covering of a space X such that the closure of each member of \mathcal{Y} has the property P, then X has the property P.

THEOREM 3. Let X be a regular topological space and let \mathcal{Y} be a σ-locally finite open covering of X such that each member of \mathcal{Y} has the property P and the frontier of each member of \mathcal{Y} is compact. Then X has the property P.

THEOREM 4. If \mathcal{Y} is a σ-locally finite elementary covering of X such that each member of \mathcal{Y} has the property P, then X has the property P. (For the definition of elementary covering see definition 1).

DEFINITION 1. [Hodel, 3]. A subset A of X is said to be **elementary** if it is open and if there exists a sequence $\{A_{i}\}_{i=1}^{\infty}$ of open subsets of X such that $A \subseteq \bigcup_{i=1}^{\infty} A_{i}$ and $\overline{A}_{i} \subseteq A$ for all i. A covering consisting of elementary sets is said to be an **elementary covering**.
A Note on \(\mathbb{R} \)-Spaces

DEFINITION 2. [Y. Katuta, 4]. A family \(\{A_{\alpha} : \alpha \in \Omega\} \) of subsets of \(X \) is said to be order locally finite if there is a linear ordering \(\prec \) of the index set \(\Omega \) such that for each \(\alpha \in \Omega \), the family \(\{A_{\beta} : \beta \prec \alpha\} \) is locally finite at each point of \(A_{\alpha} \).

Every \(\sigma \)-locally finite family is order locally finite, but not conversely.

In [13], Singal and Arya have proved some sum theorems for order locally finite open coverings of \(X \). Let \(P \) be a topological property which is closed hereditary and which satisfies the locally finite sum theorem, then the following two theorems hold.

THEOREM 5. Let \(\mathcal{V} \) be an order locally finite open covering of \(X \) such that the closure of each member of \(\mathcal{V} \) possesses the property \(P \). Then \(X \) possesses \(P \).

THEOREM 6. If \(\mathcal{V} \) is an order locally finite open covering of a regular space \(X \) such that each member of \(\mathcal{V} \) possesses the property \(P \) and the frontier of each member of \(\mathcal{V} \) is compact, then \(X \) has the property \(P \).

Obviously Theorems 2 and 3 of Hodel follow as corollaries to Theorems 5 and 6, respectively.

Since the property of being an \(\mathbb{R} \)-space is hereditary, therefore, in view of Theorem 1, we have the following theorems.

THEOREM 7. If \(\mathcal{V} \) is a \(\sigma \)-locally finite elementary covering of \(X \) such that each \(V \in \mathcal{V} \) is an \(\mathbb{R} \)-space, then \(X \) is an \(\mathbb{R} \)-space.

THEOREM 8. If \(\mathcal{V} \) is an order locally finite open covering of \(X \) such that the closure of each member of \(\mathcal{V} \) is an \(\mathbb{R} \)-space, then \(X \) is an \(\mathbb{R} \)-space.

THEOREM 9. If \(\mathcal{V} \) is an order locally finite open covering of a regular space \(X \) such that each member of \(\mathcal{V} \) is an \(\mathbb{R} \)-space and frontier of each member of \(\mathcal{V} \) is compact, then \(X \) is an \(\mathbb{R} \)-space.

As a consequence of the locally finite sum theorem and the closed hereditary character of \(\mathbb{R} \)-spaces, we deduce the following interesting results.

THEOREM 10. Let \(\mathcal{V} \) be a locally finite open covering of a regular space \(X \) such that each member of \(\mathcal{V} \) is an \(\mathbb{R} \)-space and frontier of each member of \(\mathcal{V} \) is Lindelöf. Then \(X \) is an \(\mathbb{R} \)-space.

PROOF. Let \(\mathcal{V} = \{V_{\alpha} : \alpha \in \Omega\} \) be the given locally finite open covering of \(X \). For each \(\alpha \in \Omega \), \(Fr V_{\alpha} \) is Lindelöf. Therefore there exists a countable subfamily \(\{V_{\alpha_i} : i=1,2,\ldots\} \) of \(\mathcal{V} \) which covers \(Fr V_{\alpha} \). Let \(F_1 = Fr V_{\alpha} \cup \bigcup_{i=2}^{\infty} V_{\alpha_i} \). Then \(F_1 \) is a.
closed subset of $\text{Fr } V_\alpha$ (and hence of X) such that $F_1 \subset V_\alpha$. Since F_1 is Lindelöf and X is regular there exists an open set U_1 such that $F_1 \subset U_1 \subset \bar{U}_1 \subset V_\alpha$. \bar{U}_1, being a closed subset of an \mathfrak{S}-space V_α, is an \mathfrak{S}-space. Suppose for each $i=1, 2, \ldots, n-1$, there exists an open set U_i such that $F_i \subset U_i \subset \bar{U}_i \subset V_\alpha$, where

$$F_i=\text{Fr } V_\alpha \sim \left(\bigcup_{k=1}^{i-1} U_k \bigcup \bigcup_{k=i+1}^\infty V_\alpha \right)$$

and \bar{U}_i is an \mathfrak{S}-space. Now let,

$$F_n=\text{Fr } V_\alpha \sim \left(\bigcup_{k=1}^{n-1} U_k \bigcup \bigcup_{k=n+1}^\infty V_\alpha \right).$$

Then F_n is a closed Lindelöf subset such that $F_n \subset V_\alpha$. Again, by regularity of X there exists an open set U_n such that $F_n \subset U_n \subset \bar{U}_n \subset V_\alpha$, where \bar{U}_n is an \mathfrak{S}-space. Thus by induction we obtain a family $Z'=\{U_n: n \in \mathbb{N}\}$ of open sets satisfying:

(a) Z' is a covering of $\text{Fr } V_\alpha$.

(b) $\{\bar{U}_n: n \in \mathbb{N}\}$ is locally finite.

Let $F_0=V_\alpha \sim \bigcup_{k=1}^\infty U_k$; then $\{\bar{U}_n: n \in \mathbb{N}\} \cup \{F_0\}$ is a locally finite closed covering of V_α each member of which is an \mathfrak{S}-space. Hence by Theorem 1, V_α is an \mathfrak{S}-space. Thus $\{\bar{V}_\alpha: \alpha \in \Omega\}$ is a locally finite closed covering of X each member of which is an \mathfrak{S}-space. Hence X is an \mathfrak{S}-space, in view of Theorem 1. For details of the proof, see [14].

THEOREM 11. If \mathcal{Y} be a locally finite open covering of a normal space X such that each $V \in \mathcal{Y}$ is an \mathfrak{S}-space, then X is an \mathfrak{S}-space.

PROOF. Let $\mathcal{Y} = \{V_\alpha: \alpha \in \Omega\}$. Since X is normal, there exists an open covering $\{U_\alpha: \alpha \in \Omega\}$ of X such that $\bar{U}_\alpha \subset V_\alpha$. Then $\{\bar{U}_\alpha: \alpha \in \Omega\}$ is a locally finite closed covering of X such that each \bar{U}_α is an \mathfrak{S}-space. Hence X is an \mathfrak{S}-space.

An open covering \mathcal{Y} of X is said to be a normal open covering if there is a sequence $\{\mathcal{Y}_n\}$ of open coverings of X such that each \mathcal{Y}_n is a star-refinement of \mathcal{Y}_{n-1} and \mathcal{Y}_1 is a refinement of \mathcal{Y}.

THEOREM 12. Let \mathcal{Y} be a normal open covering of a normal space X. Then X is an \mathfrak{S}-space if each $V \in \mathcal{Y}$ is an \mathfrak{S}-space.

PROOF. Since \mathcal{Y} is a normal open covering of the normal space X, therefore \mathcal{Y} admits of a locally finite open refinement [8, Theorem 1.2]. Hence the
A Note on \mathfrak{K}-Spaces

result follows in view of Theorem 11.

THEOREM 13. If \mathscr{V} be a point finite open covering of a collectionwise normal space such that each member of \mathscr{V} is an \mathfrak{K}-space, then X is an \mathfrak{K}-space.

PROOF. The result follows in view of Theorem 11 and the fact that in a collectionwise normal space, every point finite open covering has a locally finite open refinement [6].

THEOREM 14. Let \mathscr{V} be a σ-locally finite open covering of a normal space X such that each $V \in \mathscr{V}$ is an F_σ-subset of X. If each $V \in \mathscr{V}$ is an \mathfrak{K}-space, then X is an \mathfrak{K}-space.

PROOF. By Theorem 1.2 in [8], \mathscr{V} is a normal covering. Hence the result follows in view of Theorem 12.

THEOREM 15. Let \mathscr{V} be a σ-locally finite open covering of a countably paracompact normal space X such that each member of \mathscr{V} is an \mathfrak{K}-space. Then X is an \mathfrak{K}-space.

PROOF. Since every σ-locally finite open covering of a countably paracompact normal space is normal (see [9]), the result follows in view of Theorem 12 above.

THEOREM 16. Let X be a regular space which is the union of two sets A and B such that A is nonempty, compact and B is paracompact. If \mathscr{V} be an open covering of X such that each $V \in \mathscr{V}$ is an \mathfrak{K}-space, then X is an \mathfrak{K}-space.

PROOF. Let $\mathscr{V} = \{V_\alpha: \alpha \in \Omega\}$. For each $x \in A$ there is an $\alpha_x \in \Omega$ such that $x \in V_{\alpha_x}$. Since X is regular, let U_{α_x} be an open subset of X such that $x \in U_{\alpha_x} \subset \overline{U_{\alpha_x}} \subset V_{\alpha_x}$. Let $\{U_{\alpha_x_1}, \ldots, U_{\alpha_x_n}\}$ be a finite subfamily of $\{U_{\alpha_x}: x \in A\}$ such that $A \subset \bigcup_{i=1}^n U_{\alpha_x_i}$. Also, each $\overline{U_{\alpha_x_i}}$, being a subset of $V_{\alpha_x_i}$, is an \mathfrak{K}-space. Let $F = X \sim \bigcup_{i=1}^n U_{\alpha_x_i}$. Then F is a closed subset of X which is contained in B and hence F is a regular paracompact space. Therefore the covering $\{F \cap V_\alpha: \alpha \in \Omega\}$ of F has a locally finite (in F and hence in X) closed (in F and hence in X) refinement \mathscr{V}. The covering $\mathscr{W} = \{U: U \in \mathscr{Z}\} \cup \{\overline{U}_{\alpha_x_i}: i = 1, 2, \ldots, n\}$ is then a locally finite closed covering of X such that each $W \in \mathscr{W}$ is an \mathfrak{K}-space. Hence X is an \mathfrak{K}-space in view of Theorem 1.

THEOREM 17. Let X be a collectionwise normal space and let X be the union of two sets A and B such that A is paracompact and closed and B is paracompact. If \mathscr{V} is an open covering of X such that each $V \in \mathscr{V}$ is an \mathfrak{K}-space then X is an
Theorem 18. Let $\mathcal{F} = \{V_\alpha : \alpha \in \Omega\}$. Since A is paracompact, the open covering $\{A \cap V_\alpha : \alpha \in \Omega\}$ of A has a locally finite open refinement $\{U_\beta : \beta \in \Gamma\}$. Since X is collectionwise normal, therefore by Lemma 1 in [1] there exists a locally finite open covering $\{W_\beta : \beta \in \Gamma\}$ of X such that $A \cap W_\beta \subseteq U_\beta$ for each $\beta \in \Gamma$. For each $\alpha \in \Omega$, let $\alpha(\beta) \in \Omega$ such that $U_\beta \subseteq A \cap V_{\alpha(\beta)}$. Let $G_\beta = W_\beta \cap V_{\alpha(\beta)}$. Then $\mathcal{F} = \{G_\beta : \beta \in \Gamma\}$ is a locally finite open collection which covers A. Since X is regular, there exists a locally finite open collection $\mathcal{F}' = \{H_\delta : \delta \in \Delta\}$ which covers A and is such that each H_δ is contained in some G_β. Let $F = X - \cup \{H_\delta : \delta \in \Delta\}$. Then F is a closed subset of X which is contained in B, and hence is paracompact. As above, we obtain a locally finite closed collection $\mathcal{H}'' = \{H_\delta : \delta \in \Delta\} \cup \mathcal{H}''$ which covers F such that each member of \mathcal{H}'' is an \mathcal{R}-space. Thus $\mathcal{F} = \{H_\delta : \delta \in \Delta\} \cup \mathcal{H}''$ is a locally finite closed covering of X such that each member of \mathcal{F} is an \mathcal{R}-space. Hence X is an \mathcal{R}-space.

Theorem 19. Every space which contains a proper, nonempty regularly closed subset is an \mathcal{R}-space if and only if every regularly closed subset of X is an \mathcal{R}-space.

Proof. The 'only if' part is obvious. We shall, therefore, prove the 'if' part. Let X be a space containing a proper nonempty regularly closed set U. Therefore $U = U^{-}$. Let $U^{-} = V$. Then V is contained in U and so \overline{V} is a proper regularly closed subset of X where V is regularly open. Thus $X = \overline{V} \cup (X - V)$, where V and $X - V$ are both \mathcal{R}-spaces. Hence X is an \mathcal{R}-space.

Corollary 2. A weakly regular space X is an \mathcal{R}-space if and only if every proper regularly closed subset of X is an \mathcal{R}-space.

Corollary 3. A semi-regular space X is an \mathcal{R}-space if and only if every proper regularly closed subset of X is an \mathcal{R}-space.
A mapping \(f : X \rightarrow Y \) is called a perfect mapping if it is closed, continuous and such that \(f^{-1}(y) \) is compact for each \(y \in Y \).

THEOREM 22. Let \(f : X \rightarrow Y \) be a perfect mapping. Then \(Y \) is an \(\aleph \)-space if \(X \) is so.

PROOF. Let \(X \) be an \(\aleph \)-space and let \(\mathcal{W} = \bigcup_{n=1}^{\infty} \mathcal{W}_n \) be a \(\sigma \)-locally finite \(k \)-network for \(X \). We shall prove that \(\mathcal{W} = \bigcup_{n=1}^{\infty} \mathcal{W}_n \), where \(\mathcal{W}_n = \{ f(V) : V \in \mathcal{W}_n \} \) is a \(\sigma \)-locally finite \(k \)-network for \(Y \). Since \(f \) is continuous, each \(\mathcal{W}_n \) will be locally finite in \(Y \).

To prove that \(\mathcal{W} \) is a \(k \)-network for \(Y \), let \(K \) be a compact subset of \(Y \) and \(U \) be an open subset of \(Y \) such that \(K \subseteq U \). Since \(f \) is a closed continuous mapping with \(f^{-1}(y) \) compact for each \(y \in Y \), therefore \(f^{-1}(K) \) is a compact subset of \(X \) contained in the open set \(f^{-1}(U) \). Let \(R \) be a finite union of members of such that \(f^{-1}(K) \subseteq R \subseteq f^{-1}(U) \). Thus \(K \subseteq f(R) \subseteq U \) and \(f(R) \) is a finite union of members of \(\mathcal{W} \). Hence \(Y \) is an \(\aleph \)-space, since it is regular also as \(X \) regular.

DEFINITION 4. [Doyle and Hocking, 2]. A space \(X \) is said to be an invertible space if for each open subset \(U \) of \(X \) there is a homeomorphism \(h : X \rightarrow X \) such that \(h(X - U) \subseteq U \). \(h \) is called an inverting homeomorphism for \(U \).

THEOREM 23. Let \(X \) be a topological space invertible in one of its non-empty open subsets \(U \) and let \(\overline{U} \) be an \(\aleph \)-space, then \(X \) is an \(\aleph \)-space.

PROOF. Let \(f \) be an inverting homeomorphism for \(U \). Then \(f(\overline{U}) \) is closed and \(X = \overline{U} \cup f(\overline{U}) \). Since \(\overline{U} \) and \(f(\overline{U}) \) are \(\aleph \)-spaces, therefore by Theorem 1, \(X \) is an \(\aleph \)-space.

DEFINITION 5. [Levine, 12]. Let \((X, \tau) \) be any topological space. Then the topology \(\tau(A) = \{ U \cup (V \cap A) : U, V \in \tau \} \) where \(A \in \tau \), is called a simple extension for \(\tau \). Obviously \(A \in \tau(A) \). As is easily verified, \((A, \tau \cap A) = (A, \tau(A) \cap A) \) and \((X - A, \tau \cap (X - A)) = (X - A, \tau(A) \cap (X - A)) \).

THEOREM 24. Let \((X, \tau) \) be an \(\aleph \)-space and \(A \) be a closed subspace of \((X, \tau) \). Then \((X, \tau(A)) \) is an \(\aleph \)-space.

PROOF. Since \((X, \tau) \) is an \(\aleph \)-space, therefore \((A, \tau \cap A) \) and \((X - A, \tau \cap (X - A)) \) are \(\aleph \)-spaces. But \((A, \tau \cap A) = (A, \tau(A) \cap A) \) and \((X - A, \tau(A) \cap (X - A)) = ((X - A), \tau \cap (X - A)) \). Thus \(X \) is the union of two \(\tau(A) \)-closed \(\aleph \)-spaces \(A \) and \(X - A \). Hence \((X, \tau(A)) \) is an \(\aleph \)-space.
M.K. Singal and Pushpa Jain

Institute of Advanced Studies, Meerut University, and Meerut (India).

Maitreyi College, Netaji Nagar, New Delhi-23, (India)

REFERENCES