INTEGRABILITY CONDITIONS OF AN ALMOST CONTACT MANIFOLD

By R.S. Mishra

1. Introduction.

Let \(V^n \) be an \(n \)-dimensional differentiable manifold. Let there be defined in \(V^n \), a \(C^\infty \) vector valued linear function \(F \), a vector field \(T \) and a 1-form \(A \) satisfying

\[
(X + X) = A(X)T,
\]

for an arbitrary vector field \(X \), where

\[
X = F(X).
\]

Then \(V^n \) is called an almost contact manifold. It can be easily proved that

\[
\begin{align*}
(1.2) & \quad n \text{ is odd dimensional } = 2m + 1 \\
(1.3) & \quad \text{rank}(F) = 2m, \\
(1.4) & \quad T = 0, \\
(1.5) & \quad A(T) = 1, \\
(1.6) & \quad A(X) = 0,
\end{align*}
\]

for an arbitrary vector field \(X \).

Agreement (1.1). In the proceeding and in what follows the equations containing \(X, Y, Z, U \) etc. hold for arbitrary vector fields \(X, Y, Z, U \).

Let there be defined in \(V^n \) a metric tensor \(g \) satisfying

\[
g(X, Y) = g(X, Y) - A(X) A(Y).
\]

Then the almost contact manifold \(V^n \) is called an almost Grayan manifold.

Let us put in the almost Grayan manifold \(V^n \)

\[
(1.8) \quad \tilde{F}(X, Y) = g(X, Y).
\]

Then \(\tilde{F} \) is skew symmetric:

\[
\begin{align*}
(1.9) a & \quad \tilde{F}(X, Y) + \tilde{F}(Y, X) = 0 \\
\end{align*}
\]

and

\[
\begin{align*}
(1.9) b & \quad \tilde{F}(X, Y) = \tilde{F}(X, Y).
\end{align*}
\]

If in the almost Grayan manifold \(V^n \)

\[
(1.10) a \quad \tilde{F} = dA.
\]
Then V_n is called an almost Sasakian manifold. Thus for an almost Sasakian manifold
\[(1.10)\]
\[
F(X, Y) = (dA)(X, Y)
\]
equivalent to
\[(1.10)\]
\[
F(X, Y) = (D_X A)(Y) - (D_Y A)(X),
\]
where D is a symmetric connexion.

It is easy to see that for an almost Sasakian manifold
\[(1.11)\]
\[
(D_X F)(Y, Z) + (D_Y F)(Z, X) + (D_Z F)(X, Y) = 0.
\]
Nijenhuis tensor N is given by
\[
N(X, Y) = [X, Y] + [\overline{X}, Y] - [X, \overline{Y}] - [\overline{X}, \overline{Y}].
\]

An almost contact manifold for which
\[(1.12)\]
\[
N(X, Y) + (dA)(X, Y) T = 0.
\]
holds is called an almost contact normal manifold.

Let us put
\[(1.13)\]
\[
I(X) = X - A(X) T,
\]
\[(1.14)\]
\[
m(X) = A(X) T.
\]
Then
\[(1.15)\]
\[
X = I(X) + m(X).
\]
It can be proved easily that
\[(1.16)\]
\[
I(\overline{X}) = I(\overline{X}) = \overline{X},
\]
\[(1.16)\]
\[
I(X) = I(\overline{X}) = - I(X),
\]
\[(1.17)\]
\[
m(\overline{X}) = m(\overline{X}) = 0,
\]
\[(1.18)\]
\[
l(m(X)) = m(l(X)) = 0,
\]
\[(1.19)\]
\[
I^2(X) = I(l(X)) = l(X),
\]
\[(1.20)\]
\[
m^2(X) = m(X)
\]
\[(1.21)\]
\[
l(T) = 0, m(T) = T.
\]
The operators l and m applied to the tangent space at each point of the manifold are complementary projection operators. Thus there exist in the manifold two complementary distributions Π_{2m} and Π_1 corresponding to l and m respectively. Π_{2m} is $2m$-dimensional and Π_1 is 1-dimensional.

2. Integrability conditions.

THEOREM (2.1). The distribution Π_1 is integrable.

PROOF. The distribution Π_1 is given by
\[(2.1)\]
\[
a) X = m(X),
\]
\[
b) I(X) = 0.
\]
In order that Π_1 is integrable, it is necessary and sufficient that

\[(d\Pi)(X, Y) = 0\]

be satisfied by (2.1)a. Thus we have

\[(d\Pi)(m(X), m(Y)) = 0.\]

In consequence of (1.18), this equation is equivalent to

\[l([m(X), m(Y)]) = 0.\]

In consequence of (1.13) and (1.14) this equation is automatically satisfied. Hence we have the statement.

THEOREM (2.2). The necessary and sufficient condition that Π_{2m} be integrable is

\[(d\Pi)(X, Y) = 0\]

equivalent to

\[(d\Pi)(X, Y) = 0.\]

PROOF. The distribution Π_{2m} is given by

\[[a) X = i(X), \quad b) m(X) = 0,\]

In order that Π_{2m} is integrable it is necessary and sufficient that

\[(d\Pi)(X, Y) = 0\]

be satisfied by (2.6)a. Hence, we have

\[(d\Pi)(i(X), i(Y)) = 0.\]

In consequence of (1.18), this equation is equivalent to

\[m([i(X), i(Y)]) = 0.\]

With the help of (1.13) and (1.14) this equation takes the form

\[A(X)[T(A(Y)) - A([T, Y])] - A(Y)[T(A(X)) - A([T, X])] = X(A(Y)) - Y(A(X)) - A([X, Y]),\]

which is the equation (2.5)a.

Barring X and Y in (2.5)a and using (1.6), we get (2.5)b.

COROLLARY (2.1). The equation (2.5)b is also equivalent to

\[(d\Pi)(X, Y) = 0\]

or

\[(d\Pi)(X, Y) = 0.\]

PROOF. In consequence of (1.6), the equation (2.5)b is equivalent to

\[(d\Pi)(X, Y) = 0,\]

which, by virtue of the definition of N is the same as (2.5)c. Barring X and Y
in (2.5)c, we get (2.5)d. Barring \(X \) and \(Y \) in (2.5)d, we get (2.5)c. We similarly obtain (2.5)e. Barring \(X \) in (2.5)e we get (2.5)c. Hence (2.5)c, d, e are equivalent.

THEOREM (2.3). Necessary and sufficient condition that \(V_n \) be integrable is (2.5).

PROOF. The statement follows from Theos. (2.1) and (2.2) and Cor. (2.1).

COROLLARY (2.2). If an almost contact manifold \(V_n \) is integrable

PROOF. The equation follows from (2.5)a, by using the fact that \(d^2 = 0 \).

THEOREM (2.4). The necessary and sufficient condition that an almost contact normal manifold be integrable is

\[(2.7) \ a \quad N(X, Y) = A(X)N(T, Y) - A(Y)N(T, X),\]

equivalent to

\[(2.7) \ b \quad N(X, \bar{Y}) = 0,\]

or

\[(2.7) \ c \quad N(X, \bar{Y}) = A(X)N(T, \bar{Y}).\]

PROOF. Substituting from (1.12) in (2.5)a, b we obtain (2.7)a, b. Barring \(Y \) in (2.7)a and using (1.6), we obtain (2.7)c.

THEOREM (2.5). An almost Sasakian manifold cannot be integrable.

PROOF. Substituting from (1.10)b in (2.5)a, and using \('F(T, Y) = 0 \), we get \('F = 0 \),

equivalent to

\[F = 0,\]

which proves the statement.