사료용 아미노산의 제조 및 장래전망

김무진

〈목표의 수의약품〉

발전도상국 및 후진국들의 급격한 인구 증가
는 농업적 생산성 증가와의 불일치로 인한 식량
자원의 부족은 심각한 사회문제로 등장하고 있
으며 우리나라도 식량 수급상 악화 의외(外貨)
를 소비하여 식량을 수입하지 않을 수 없는 상
태하에 농여러가 있다.

기술(技術), 생산 구조(生産構造) 및 정책의
협력하여 이 식량위기를 타개하여야 할 것이
며 어를 들면 비(稻) 및 기타 농작물의 육종에
의한 증수(增收), 균(菌), 효소 등의 미생물을
이용한 단백질산의 개발, 클로렐라와 기타 녹조
생물(綠藻生物)을 이용한 식량자원의 개발 및
합성법에 의한 자원(資源)의 개발 등이 그 방안
이 될 것이다.

기본적으로는 후진국에서는 에너지(Energy)
원(源)의, 선진국에서는 단백질원(蛋白質源), 특
히 육(肉)의 부족적 전면(全面)으로 해며 우
리나라는 에너지 자원도 단백질자원도 모두 확
보하지 않으면 안될 처지에 처해 있다.

우리나라의 사료산업을 보면 주에너지인 육
수수는 전량 도입(導入)에 의존하는 실정이고
단백질소인 어분, 태두박도 주로 도입에 의존하
고 있으나 최근 국제적인 어분자원의 고갈로 국
내원토에 농을 물리지고 있으며 태두박은 태두(大
豆)의 도입 가공에 의한 산물에 의존하고 있는
실정이다. 그러나 태두(大豆)도 그의 생산능력
과 수출능력이 있는 국가(國家)는 오직 미국(美
国)뿐으로, 그것도 비세부(美西部) 1 2개주(個州)
에 국한(局限)되고 있는 실정이다.

을 타개(打開)하기 위한 방안(方案)으로서는

주(主)로
① 국산 유실종자(油質種子)의 재배체적(栽培
면적)의 확대(擴大) 및 그의 이용성(利用性)의
향상(向尚)
② 비농산물(非農産物)의 농소동의 질소화합
물의 사료화나 기타(其他) 생산의 극대화(極大
화)를 가져 올 수 있는 생명체의 개발 및 비농
산물의 이용에 의한 탄백질 창출(創出)하는 식
유단백질(S.C.P) 사료화 등.

현재의 사료자원의 유해한 이용을 위한 새
로운 사료 표준의 설정 및 탄백사료의 탄백질수
준의 저하(低/下) 등의 노력을 찾아야 할 것이
다.

이중에서 공업적(工業的)으로 제조(製造)되고
있는 사료용 아미노산을 이용함으로서 현재는
뇨(尿)중에 페가있는 질소(N)를 탄백질로서 식
생산(實生產)에 이용하여 페가하는 탄백(莫大)
한 자원을 회수(回收)할 것도 귀중한 의의(意
義)가 있을 것이다.

1) 사료용 아미노산의 이용상황

사료첨가물(飼料添加物)로서의 지위를 확보하
고 있는 것은 메치오닌(Methionine)과 라이신
(Lysine)이 있으며 메치오닌의 효과(效果)를 갖
고 있는 제품은 DL-메치오닌과 MHA(methionine
Hydroxy analogue)의 두 종류가 있고 이의 시장
성(市場性)의 확립은 세계적으로 2차 세계대전 전
후 양국이 급속도의 발전을 [이록하고 특히
태두(大豆)의 탄백사료로서의 이용이 경쟁
력적 인원이 되어 현재의 세계 수요량(需要量)
은 년간(年間) 30,000 40,000여톤에 이르며 이
는 앞으로 더욱씩 증가될 추세에 있다.

라이신(Lysine)은 태두박을 제외한 기타 유실
박(油質粕)이나 곡류의 단백질 강화(強化)를 위
하여 개발되었으나 그의 이론적인 지위(地位)에 비(比)하여 실제의 소미량은 세계적으로 아직도 적으며 앞으로 그의 시험연구 및 용도개발에 따라 증가할 것으로 생각된다.

2) 사료용 아미노산의 제조

아미노산의 제조(製造)는 천연물(天然物)에서 분리법(分離法), 발효법(發酵法), 합성법(合成法)이 사용되어 지고 있다.

메치오닌은 주로 합성법(合成法)에 의해서 제조되어지고 있으며 그의 전형적인 생산공정은, 도 1(図1)과 같다.

메치오닌은 사료첨가물로서는 D Form이나 L Form이 실용적으로 쓰이며 화학합성(化學合成)에 있어서는 광학분할(光學分割)을 필요로 하지 않으므로 경제적으로 D.L 혼용(混用)이 유

![Image]

티(有利)하다. 그리고 MHA는 메치오닌의 아미노산(基; NH₂)에서 수산기(水酸基; OH)가 있는 것으로 채내(體內)에서 쉽게 메치오닌으로 전환(轉換)하여 그의 효용가치는 DL-메치오닌의 약 83%이다. 이는 메치오닌의 중간산물(中間產物)로서 그의 생산가격이 메치오닌에 비하여 저렴하게도 주로 이용되고 있다.

라이신(Lysine)은 현재 발효법(發酵法)에 의(依)하여 생산되고 있으며, 이의 제조기술(製造技術)은 구루타민산(glutamic Acid)의 생산기술에 기초를 두고있다. 주원료(主原料)로서는 당밀(Molasses)이 사용되고 있으며 보다 현가(安価)한 원료로서는 탄화수소(炭化水素)와 초산(酯酸)을 사용하는 방법이 개발되어 있다. 합성법(合成法)으로는 홀랜드(Holland)의 Stuats Mijnen社에 의해 개발되었으나 발효법에 비해

고가로 생산이 중지되었다.

2: Lysine의 합성법

![Image]

트립토판(Tryptophan)은 옥수수에 있어서 부족하기 쉬운 아미노산으로서 라이신(Lysine) 다
음으로 사료용이 가능한 야미노산이나 현재로서는 발효법에 의하여 생산이 되며 현재로 고가(高価)로 실용화는 생산원가가 실용화가 가능할 때까지 절감되지 않으면 안될 것이다. 기타의 야미노산도 트립토판과 같이 원자의 결합과 용도의 문제에서 사료화의 실용(實用)이 아직 되지 않고 있다.

3) 사료용 야미노산의 이용

① 배합사료의 야미노산 균형(均衡)의 적정화(適正化)와 단백질 수준의 저하(低下)

사료용원료의 야미노산 함량 및 가축 가금의 사료용(各用途)에서의 야미노산 요구량은 여기에서 연구가 전개되어야 하며 야미노산 요구량에 있어서 전자계산기(Computer)를 사용한 배합설계(配合設計)의 자유도(自由度)를 높이고 경제적 으로 단백 순환의 고가(高価)일 때 최저용료원 가(最低原料原価)를 내는 데 크게 기여할 것이 다.

특히 또 하나의 문제는 라이신(Lysine)의 경우에 주의하지 않으면 안될 것은 이용도(利用度:Availability)이다. 이용도는 현재 생물학적(生物學的) 및 화학적(化學的)인 방법에 의해서 측정(測定), 조정(調整)되고 있다. 그중 하나는 미국의 콜스(Combs)가 연구 작성한 것으로 두두박(大豆粕)의 라이신의 이용도(Availability)를 100으로 삼는 상대적(相對的)이 유용성을 나타낸 것이나, 이 경우에 문제는 각 사료공장에서 사용하고 있는 두두박의 품질(品質)이 콜스(Combs)가 사용한 것과 어느 정도의 차이(差異)가 있는지 또는 두두박(大豆粕)의 자신(自身)의 라이신의 이용도(Availability)가 상당히 변동(變動)하고 있는 점이다.

두두박로는 캐르터(Carpenter)의 방법(方法)에 의해 단백질의 라이신의 유리(遊離) E-야미노 기(基)의 당(量)을 측정하는 방법이다. 이것은 이론적(理論的)으로 이해(理解)하기 쉬운 방법이며 화학실험실(化學實驗室)으로서 측정하는 이점(利點)이 있으나, 실제 도장에서 측정한 방법은 상관계수(相関係數)가 어느 정도 좋지 않다는 의견(意見)도 있다.

그리나 일반 사료배합의 계산에서는 야미노산 특히 라이신(Lysine)에 관해서는 이용도(利用度:Availability)가 고려되어야 하고, 여기에 사료용 야미노산의 이점(利點)가 있다.

② 각(各) 야미노산의 생리적 효과(生理的成效)의 이용(利用)

야미노산의 이용성에 있어서의 체액으로 고려해야 할 음은 단순(單純)히 단백질(蛋白質)의 생체함성(生體合成)의 재료(材料)로서 많이 아니고 각(各) 야미노산이 갖고 있는 독특(獨特)한 효과(成效)에 착안(着眼)할 필요가 있다. 예(例)로 보병은 메니시오린(Methionine)이 간장 기능(肝臟機能)과 관련하여 사용되어 지는 예(例)가 인체(人體)에 응용되고 있다. 이와 같은 분야(分野)로서 인공유(人工乳: Milk Replacer)가 있어서 야미노산 첨가(添加)

이라는 곤(困)돈(同)의에 있어서 독특(獨特)히 많이 발생(發生)하는 질병(疾病)으로서 설사(下痢)가 있다. 설사 자체(自體)는 복잡한 현상(現象)으로 단순히 고찰(考察)하기는 쉽다는 문제이나 설사가 인공영양(人工營養) 즉 조기이유(早期離乳)시 혹은 이유적후(離乳以後)에 특히 많이 발생하는 사실로서, 이는 급여하는 사료(人工乳)의 원료로서 탄지분유(脫脂粉乳)의 두두박(大豆粕)이 사용(使用)되어 지므로, 모유(母乳)에 비(比)하여 알칼리 염영(鹽類)의 함량(含量)이 많다는 데도 주요한 원인(原因)이 있다. 이는 우유(牛乳)의 들유(豚乳)에 비(比)해서 나트륨(Sodium Na)의 함량이 높고 두두(大豆)에는 카리 양이 많아 모유기한(哺乳期間)중의 자동(子豚)의 신장(腎臓) 기능에 비하여 모유(母乳)의 급여(給乳)시 보다 많은(多量)의 알칼리염영(鹽類)을 섭취로써 채화(代納)하여(腎臓) 함량(含量)은 많이 성장(成長)하며 알칼리화(化)하는 경향(傾向)이 있다. 또한 단백질의 영양가 (營養価)에 있어서는 모유(母乳)의 것에 비(比)하여 영양으로서 소요(需要)의 생산량(生産量)도 모유(母乳)에 비하여 작게 된다.

이것은 더욱더 체액(體液)의 알칼리화(化)로 축진하므로 음수량(飲水量)을 증가(增加)시키
고 수분(水分)의 제내검유(體內殘留)를 가지와 섬사(下痢)의 발생의 배경(背景)이 되어진다. 이에 대한 대책(對策)으로서 알칼리형염화합물(合物) 내리는 것과 단백질 수준을 내리는 것의 두가지 방법이 있다. 그러나 심지어(實地)에서는 단백질사료의 배합량(配合量)을 내리는 것이다. 그러나 성장(成長)을 저하(低下)시키지 않고서 단백질 함량을 내리기 위해서는 아미노산을 첨가(添加)함으로서 단백질(蛋白質)의 영양가(營養価)를 높이는 방법의(方)는 합리적(合理的)인 방법이 없다. 현재 유럽(Europe)동지에서는 이에 합리적인 라이신(Lysine)의 이용방향으로서 고장(高張) shed(實用)하고 있다. 또한 섬사(下痢)의 발생시 그의 치료를 위한 투약(投藥)으로 장내세균(腸內細菌)이나 고장(高張)되므로 이것은 제한적(限制的)이다. 섬사후의 생장추진을 방지(防止)하기 위하여, 아미노산의 침가는 복합성 영양요구(要求)를 가진 유산균(乳酸菌)의 반식(繁殖)을 자극시켜 상태적(狀態的)으로 심어지게(心) 장(腸), 소장(小腸)에 있어서 유산균(乳酸菌)이 주의(主位)상태를 가져와 이를 방지(防止)할 수 있다.

특히(特異)한 작용모든에서는 라이신과 칼슘(Ca)의 관계로서 특히 장벽(腸壁)에 있어서 칼슘의 흡수(吸收)의 작용을 가지는 칼슘 결합 단백질(Calcium binding Protein)이 라이신의 함량이 높을수록 잘 형성(形成)되어 칼슘의 제내흡수(體內吸收)를 촉진(促進)하며, 떡(體)의 화분(化分)에 라이신이 결여(際여)한다는 것을 나타내는 실례, 또한 떡과 난적(卵殻)등의 칼슘침착(沈着)을 촉진(促進)하는 것 등에서 실용적, 의(的)의 실용의(實用的)을 찾을 수도 있는 것이다.

아미노산 및 그의 유도체(誘導體)가 가지고 있는 특수(特殊)한 생리적 효과(生理的 效果)를 이용하는 것으로서 맥(味)과 향기(香氣)가 있다.

맛(味)과 향기(香氣)는 작용(作用) 분야(分野)에서도 유효한 것으로서 예(例)로서 미국(美國)의 동남부(東南部)에서는 그루타민산소다(Sodium glutamate)가 성시의 사료첨가물로써 약법(藥法) 하여 사용되며 이는 식품분야에 있어서 연구(研究)한 것을 특이가 사료에 이용한 것으로 불수 있으며, 향기(香氣)에 있어서는 아미노산과 맛(味)의 반응에 의해 여러 가지의 향기를 인공적으로 나게 하여 사료의 기호성을 증진시키는데 이용될 수 있다.

⑥ 반추가축(反芻家畜)에 아미노산의 이용

아미노산의 바다와 같이 반추가축(反芻家畜)에서의 섭취(摂取)는 질소성(Nitrogen Sauce)이 제일(第一)하며, 비생물(微生物)에 의해 단백질화(化)가 이루어져 제일위(第一)가(以下)에 보내져 소화흡수(消化吸收)되어 진다. 그러나 이에 대량(大量)의 제어가 다가(達)게 되어 헤이드(Hatfield)의 실험에서 밝혀질(揭示)하여서 높은 성적(成績)이 나온다고 한다(does). 현재의 실험과는 반추가축의 체질(體質)에 의하여 각각의(各自的)에 따라서 다르기 때문에 그러한 실험결과는 제외(除外)하고, 다시 반추가축의 사료를 제외(除外)하는 것과는 반추가축의 사료의 영양의(營養的) 사용에 있어서는 저려(저려)하지 않아야(不應) 하며 아마노산의 사용(使用)에 있어서는 저려(저려)하지 않아야 한다고 한다.

고려되고(考慮) 제일위(第一胃)의 방향(方向)이 여러(多)의 유리(有利)한 핵심(核心)에 있으며 본류(本部)에 있어서는 높은(高)의 무과(物質)의 이용에 있어서는 고려(考慮)할 수 있다.

4. 아미노산 유도체(誘導體)의 축산에 이용

증(腎) 호르몬(Hormone) 중에서 비교적 분자량(分子量)이 적은 백타이드 제통(Peptide 系統)에 있어서는 합성(合成)이 가능(可能)하며, 아미노산의 이용(利用) 측면(側面)에서 주목(注目)되고 있다.

또한 아미노산 유도체의 제본활성체(界面活性體)는 축산경영의 대규모화(大規模化)에 의한 환경의 개선등의 목적(目的)으로 제작(製作), 소독(消毒)의 필요성이 있고 이에 대해 생산물의 안전성(安全率), 종업원의 안전성 및 공해(公害) 문제에 있어서 기존(既存)의 제작(製作), 약제인 크레이(クレイ) 등에 비(比)해 안전성이 높고 미생물독성(微生物分解性)이 높은 점에서 역시 중요한 의(意)를 갖고 있다고 생각 할 수 있다.