On Construction of Binary Number Associtaion
Scheme Partially Balanced Block Designs

U. B. Paik®

1. Introduction

In a Balanced Factorial Experiments (BFE) with n factors F;, F,,.--,F,
at my, my, ---,m, levels respectively, Shah [15] has considered the following
association scheme: the two treatments are the (fy,p,,++-,f.)th associates,
where p;=1 if the ith factor occurs at the same level in both treatments
and p;=0 otherwise; s, s, ...5n» Will denote the number of times these
treatments occur together in a block. He has showed that a BFE is Partially
Blanced Incomplete Block (PBIB) design with respect to the above asssoci-
ation scheme. Kurjian and Zelen [6] have proved that factorial designs
possessing a Property A (a particular structure for their matrix NN’) are
factorially balanced.

Hinkelmann [4] has defined the EGD/(2"-1) —PBIB without referring to
Shah [15] nor to Kurjian and Zelen [6]. He has proved the uniqueness of
the association scheme. Also he has obtained the eigenvalues of NA’, its
determinant, its Hasse-Minkowski invariants, ¢,, and non-existence theo-
rems. Note that Hinkelmann characterized the associate classes of the
designs by the ordered plet (73, 72,++7»), where 7;=0 if ith factor occurs
at the same level in both treatments and 7;=1 otherwise, i.e., (7,72 7n)
=(1,1,-+,1) — (p1,$3 -+, p»). Kshirsagar [5] has pointed out that BFE are
EGD/(27-1)—PBIB defined by Hinkelmann [4] and possess Property A
defined by Kurkjian and Zelen [6]. Also he has obtained the eigenvalues
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and eigen-vectors of the C matrix(C=rI—1/k NN"’) of such designs in a much
simpler form given by Hinkelmann.

Paik and Federer [10] have investigated on PBIB designs considered by
Shah [15] without knowing the results of Hinkelmann [47] nor Kshirsagar [5].
In the paper [10],the block designs possessing Property A are designated as
PA Type Block Designs and likewise, those two-way elimination of hete-
rogeneity designs possessing both Properties A and B (introduced by Zelen
and Federer [18]) are designated as PAB Type Rectangular Designs and
obtained the eigenvalues and eigen-vectors of PA type and PAB type
designs, and considered the efficiency of such designs.

Also, Paik and Federer [11] have designated the association scheme con-
sidered by Shah [15] as Binary Number Association Scheme (BNAS) and
proved the following theorems.

Theorem 1.1. Every PA type block design is a BFE, and conversely.

Theorem 1.2. Every Balanced Factorial Incomplete Block Design is a
PBIB with BNAS, and conversely. So every PA type Incomplete Block
Design is a PBIB with BNAS, and conversely.

Theorem 1.3. Any n-ary Partially Balanced Block (NPBB) design having
BNAS is a BFE and is a PA type block design, and conversely.

Theorem 1.4. If the design is an NPBB having BNAS with respect to
rows and to columns, then the design is a Balanced Factorial Rectangular
Experiment and is a PAB Type Rectangular Design.

Theorem 1.5. Every PAB Type Rectangular Design is an NPBB Rec-
tangular Design having BNAS with respect to rows and to columns, and
conversely.

Finally, Paik [9] has presented a practical method of intra- and inter-
block analysis of PBIB having BNAS with various steps in computation and
extended the method to the PAB Type Rectangular Designs.

In this paper, we investigate some construction methods associated with

BNAS PBIB designs. We present and discuss the construction methods derived
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from the paper of Shah [16] in Section 2. Also, a particular method of
construction of BNAS PBIB designs with two treatments per block is present-

ed in Section 3.

2. Construction Methods of BNAS PBIB Designs Derived from the
Paper of Shah [16]

Since a design uniquely determines its incidence matrix and vice versa,

we may denote both a design and its incidence matrix by the same symbol.

Let N, and N, be the designs expressed by their incidence matrices re-

spectively, then

Nz =NMQN,

uniquely determines a design and so does N, =N,@N;. Note that the designs
N1z and N are structually the same, i.e., one of them can be obtained from
the other by simply renaming the treatments and renaming the blocks. The
design My, is called as Kronecker product of the designs N and N, after
Vartak [17]. The method is equivalent to the replacement of two elements,
0 and 1, by two matrices. A generalization of the idea is given by Shah
[14], using only the incidence matrices of BIB designs for substitution. In
the paper of Shah [16]), same idea is extended to the case where substitution
is by the incidence matrices of PBIB designs.

Definition 2.1. The s designs N, N,,---,N;, each in v treatments and b
blocks, will be called associable designs, if there exists an orthogonal matrix
L, such that L’NN;/L is diagonal for all i,j=1,2,+-.,s. The matrix L will
be called a canonical matrix of association.

Example 2.1. Any design JV is associable with itself and its complementary
design J,xp—N, where [y« is a vXb matrix with all elements equal to unity.

Example 2.2. Any design is associable with a null design Oyxs, or a
randomized block design Jyxp, provided the numbers of treatments and

blocks are the same for the different designs, O,.; is a vxb matrix with

all elements equal to zero.
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Example 2.3. The identity design is asssociable with any design where
incidence matrix is a symmetric »x» matrix.

Definition 2.2. If there exists s uXw incidence matrices N*, No¥,eee,
Ns*, such that i‘l Ni*=Juxw, and if there exists an orthogonal matrix L*
such that L*’(J\lfi*Nj*’—}—Nj*Ni*’)L* is diagonal for all 5,j=1,2,+.,5, then
the matix

A= jlim*
will be called a canonically balanced matrix in s integers 1,2, ...,s.

Suppose there exists s BIB designs N*, N,*,..., No*, such that 2INF= T

and (Ni*+N;*) is also an incidence matrix of a BIB for all i#j, then A

=3¢ N*is a canonically balanced matrix in s integers 1, 2, ««.,s.

(100 (010 001
Example 2.4. Let N*= 001/ No*= 1100, M*=1{010], then SNF=
010 001 100

3

100 011
J3xs and NN+ 4 NN+ = [O 1 OJ if i=j and {l 0 IJ if 755 for i,j=1,2,3,
0601 110

So, there exists an orthogonal matrix L* such that L*’(J\’i*Nj*’—f—N,-*Ni*’)
L* is diagonal for all 1,j=1,2,3. Therefore

123
A=Y i N#= 231
312

is a canonically balanced matrix in 3 integers 1, 2, 3.

Given v=mymy--m,, let B(p, pu, - py be an association matrix for the (#,,
b2+ pn)th associates, then it may be easily verified that By, pu - p.y can be

expressed as follows:

B(vaﬁh n D) :£®(Jm1‘1mt)l_ki’

where - {]m‘_jm,, if p;=0,
Un=Lu)™r =1y if pi=1.
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Note By, .- p,) 15 @ symmetric matrix, in which each row total and each
column total is equal to the number of (#;,0,,+«,p.)th associates, n¢p,, s, p.)-

Furthermore

il,i@]m:i{;l@Uer(]m,—Im)]

:jl@[(],,,i—lmy—!— (Tmi—In) 1]

M=

ﬁ@(]m'—]m)l-h }

2 .
0 | pitputretpas=s iml

This implies

B ta by | =J -
Ditpet D=5

£ |
\

s=0

Theorem 2.1. Let B, be a association matrix for the ( p,p,,-+fn)th

n
associates in BNAS, where p= Y p2»" " for v=mm,.--m,, and let
A=1

Ny=B, for p=0,1, ... s s=2n-1,

then N, for all p=0,1, ..., 5, are 2» mutually associable designs and
s
A=3 (p+1)B, is a canonically balanced matrix in 2» integers 1,2, ..., 27
$=0
The proof of the theorem is obvious from the fact that }>B,=J, and in
P

BNAS,

BPBP':BP'BP:ZZ: { Z h(plvpb'"’pn)'j{@l)ih ’

Dbt tpa=s

where A(py, p5, -++, p») are constants and
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Theorem 2.2. (Shah [16]) If there exists a canonically balanced matrix 4

in s integers 1, 2, ..., 5, given by 5_.;5 Ni* with the corresponding orthogonal
i<

matrix L*, if there exists s mutually associable with incidence matrices

Ny, N -+, Ns with the canonical matrix of association equal to L, and if

the integer ¢ in A is replaced by the matrix N. (¢=1,2,:-,5), then the

matrix A will be converted into an incidence matrix N of a design whose

canonical matrix is L*QL.

Note that, from the method of construction, it follows that
(2.H N=3 N* QN
i=1

If NN/ =N;N/, NN’ can be expressed as

(2)  NN'=3 NANAQNN 4 5 (NENA L N N Y QNN
1 i<j

Therefore, if N*Ni¥, NN/ for all i=1,2, -, s, and Ni*N;*, NN, NNy’
for all {<Cj have the Property A then NN’ also have the Property A. This
means that the design N is a BNAS PBIB design.

In (2.1), if NAN*' =N*N*, then NN’ may be expressed as

(2.3)  NN'=3 NENFHQNNS 4+ 3 NENHQ NNy + NNy,
i=1 i<

Example 2.5. Consider 3 associable designs

10 01 00
-Nl';[o 1}, sz[l OJ’ -NS—_—(O OJ’

and the following canonically balanced matrix A in 3 integers [, 2, 3;

123 100 010 001
A=23 1| ie, N¥=001] N*=/100| N*=|010]
312 010 001 100
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In this case, Ny* Ny¥ =Ip, Np*Np¥ =, Noe*No¥'=Ip, NNy =1, NN/ =I,,
NNy =0, 50 NN Ny Ny¥ = Jo— I, -and NoNy = NNy = J—I,, s0 NN =
2L+ (Js— 1)@ (T~ 12)
=3Is— 130 ] s — Js& 1+ T,

where
N, N, N 100100
011000
Nl N, Mg N =]01001 0|,
| 100001
{NSMN2 001001
000110

Therefore, we obtain the following BNAS PBIB for v=3x2, k=2, b=6, r=2;

block bl bz b3 b4 b5 b(:,
1 221 34
43 5665

Example 2.6. Consider 2 associable designs

1

12y . (10 . (01
and let 4=, 17 e, M= 1], N, _[1 0],

In this case, we obtain the following BNAS PBIB for v=2x3, k=2,
b=6, r=2,

O OO O —
OO —=OO
—OOoO OO
SO OO
—_O O OO —
O O—=O O

1

1

|

|

NN =3I6— LR Js— J QI+ Js.

/

Example 2.7. Let Ny=| 1 1 1 0 |, Ny=Js.s—N,, and letA:[Z T, e,
1011
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N1*=[é ‘1)] Nz*z( ‘ é] In this case, N*N,¥ =I,, NNy =TI, NENH =

N* N =T, — I, MM =L:+2]5, NNy’ =1, and NN =N N =Ts—Is. So,

NN'=LQ(Is+2]3) + LRI+ (Jo— L)Q(Js— L)
=4I—2] Q1342 ]s.
Therefore, we obtain the following BNAS PBIB for v=2x3, k=3, b=8,

r=3;

N=

e —, O OO
O = =00

1
0
0
0
1
1

OO et s O
O r=st O = O e
OO M~=O

11
11
10
00
00
01

Example 2.8. Using the association matrices of BNAS for 0=2x3, let

M=(I:= L) (Js— 1), No=(J,—L)R®L;, No=1,Q(J:—1I),

and let

010 001
, Ny=| 100/ M*t=l010
001 100

then we obtain the follwing a BNAS PBIB design for 1=3%x2x3, k=5, b=
18, r=5.

Note Since N, N,, N; are the association matrices NN,/ =N;N;’ for all
t,j and from Example 2.5, we know that N*N*' +N*N*' =I, or J,—1I,
for all i=fj,

bl bz bs b4 bs b6 b7 bs b9 b10 611 b1z b13 b14 b15 b16 b17 b18

4 4 4 5 6 1 2 3
6 5 8 7 7 11 10 10
7 9 9 8 12 12 11
9 8 17 16 16 14 13 13
14 15 18 18 17 15 15 14

5 4 4 2 1 1 2 1 1
6 6 5 3 3 2 3 3 2
10 11 12 7 8 9 11 10 10
14 13 13 17 16 16 12 12 11
15 15 14 18 18 17 16 17 18 1

w W o & »
3

where the relationship between the treatment numkber ¢ and the treatment
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2 3
combi nation (i, 7,,15) is t:{ > (lImy) I.SJ_Hﬁ—l' In this case, the treatment
1

s=1 k=s+

structure matrix NN’ is:

NN' =55+ LRLR T s+ J{QLR T3~ 2T QLRI — 2L /2T +2J 5.

Example 2.9. (Shah [16]) Confounding the interaction between two factors
F; and F, in a 22-factorial, we get a BFE (=BNAS PBIB) with the incidence

10
matrix le(O 1 ] Let the balanced matrix 4 in 3 integers be given by
01
94
(1321 100] 001 010
A= 213 lie., N*=] 010 LN*= 1001 N¥= 001
1321 001 010 100

Now, putting N,= N;=Js.,—N; and substituting for / in A4, the matrix
Ni, i=1,2,3, we obtain a BFE in 3x22 in 6 blocks of 6 plots each.

Note that designs N, N,, N; are mutually associable and N*N;* =
NiEN#* for all i, 7.

Alternatively, if we take N,=[J4x,—N; and N;=04; we obtain a BFE
in 6 block of 4 plots each.

3. A Particular Method of Construction of BNAS PBIB Designs

with Two Treatments per Block
In a BNAS PBIB design for o=mym,.-m,, suppose that B, 3, ... is the
association matrix for (@, fs, +++, p»)th associates. If the treatment structure

matrix NN’ has the following form

3.1 NN =n¢p, a5 LoEBp, pr, oo )
where n¢p,, p,,p.) is a row total of By, p,,....p,), then we shall call this matrix
as a basic treatment structure matrix associated with the B¢y, 5, .-, p,).

Given an association matrix By, py, o $,)="(0i5) b, pa, o 9.)s 5 J=1,2, o0, 0, it
may be easy to construct a basic BNAS PBIB design with two treatments
per block, i.e., write down the notations b;;(i< j), which have nonzero

values such that, for example,



48

94 } # &t

T

BF %
blz, b13, b177"‘, bzs,"' ”v_z,v,

then we can construct immediately the following basic BNAS PBIB design

with two treatments per block,

block symbol bio bys bigeesbygees by g,y
1 1 leee 2eeeens p-2

and 73”(151.1)2,---,1:")-
Thus, for any given association matrix By, s, ... p,), there always exists a
basic BNAS PBIB design with two treatments per block. However, the

design may be disconnected.

Let the notation D(v, k,b,r) be a PBIB design such that number of treat-

ments=v, block size=*k, number of blocks=b, and number of replications
=r, then we may obtain a design D(v, %, b;-+-b,, r,-+7r,) by adding a design
D(v,k, by, r,) toa design D(v, k,b,, 7). In this case, if we denote NN'(z,k,
by by, rit+r1y), NN (v, k, b, 1y), and NN’ (v, k, by, 1) as the éorresponding treat-
ment structure matrices to the above each design, respectively, then the

following relationship holds:
(3.2) NN/ (. k biby, ) =NV (o, B by, 1) + NN (o, k, by, 7).

Thus, a given », k=2, r, a BNAS PBIB design D(»,k=2,b,7) may be ob-
tained as a linear combination of basic BNAS PBIB designs BD(v, k=2, 5;,

7i), i-e-a

(3.3) D(s,k=2,b,1) =Y z:BD(s,k=2,b; 1), 2 0,
i=1

5 n

such that r=3 z;r;, where i=3 p,27"% s=2= 1In this case, however, we
i=1 h=i

must check whether this design is connected or not.

In an mymy...m,-factorial, suppose D(v, k,b,r) is a BNAS PBIB design, i.e.,
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(3 4) ‘/‘VN,:Z” f Z ) '11(51’ 62’ " 5")4Z]'1®Di5i} )

5=0| 8,8t 40,=5

then the efficiency factor rassociated with the estimate of generalized
interaction A;*:Ay%...4,%, where x;=0 or 1 for /=1, 2,..., n, is denoted

by 6(xy, x5, +++, ¥») and is defined as follows (Kurkjian and Zelen [6]):

n

(3.5) r (%, xg, 00, % Z;:

1 n
{ Z (51:52, T 5,,){_]1}21«(;:1-, 5:‘)1 .

J

for g(0,0, -+, 0) =r——h(0, 0,0, g3y, &y, -+, ) = — 1 h(By,0p-+-,8,) if (B,

Oy, +++, 0n)=F (0,0, +++,0) and ==(1,1,..-,1) and E;(x;,d;) are given by the table

i
0 1
0 1 m;
Xi
1 1 0

Let 8,(xy, x5, +++, x,) and 6,(xy, %,, «++, %) be the efficiency factors for v =mym,
...m,, corresponding BNAS PBIB designs D, (v,k,b,,r;) and D,(v,k,b,,1,), respec-
tively, and let 6% (xy,x,, +-+, x») be an efficiency factor corresponding BNAS
PBIB design D*(v,k,b;+b,,r,,+1,), then, from (3.2), (3.4), and (3.5), we

obtain the following relationship:

(3.6) g%(01,02,++,0n) = g1(01, 0z, =+, 0n) +82(01, Oz, +++, On)
and
(3.7 (ri+72) 0% (xq, X9y o+, %n) =110, (X1, X3, <+, Xn) d-ro0,(xg, X2, 00+, X0).

Example 3.1. In the case of 0=2x3,
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000011

000101

000110
B(O:O):(]Z_IZ)®(]3—IS): 011000
101000

110000

000100

000010

000001
Bo,;,=(J,—L)RI:= 100000
010000

001000

011000

101000

11000
Bay=L®Us~I=| 30001 |
000101

000110

B, =1,&1;.
The nonzero values of 4;;(i{j) in B(0,0) are

bl5: blGJ b24) bZG; b24: bSSo
So, the basic BNAS PBIB design BD,(6, 2, 6, 2) associated with B ,q, is as

follows:

block symbol: b5 big bos bog bsy bas

1 1.2 2 3 3
5 6 4 6 4 5

NN () =2I+ ([~ 1)@ (Js— L)
:316_]2®Is_12®]3+]6
26,(0,1)=3/2, 26,(1,0)=2, 26,(1,1)=1/2,

so this design is a connected one.

Likewise, BD,(6,2,3,1) associated with B ,,, is

block symbol: 54 b5 _b_gs

1 2 3
4 5 6
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NN (2) =Is+ (J,— I)RIs
=J:&1s
0,(0, 1) =0, 6,(1,0)=1, 6,(1,1)=1,
so this is a disconnected design.
BD;(6,2,6,2) associated with B y,q, 1s
block symbol: by, b1z bas bus bss bse

11 2 4 45
2 3 3 5 6 6
NN (3) =2Ls+ 1, (Js—1s)
=Is+I,RQ ] 3.
In this case, 205(0, 1)=3/2, 265(1,0)=0, 263(1,1)=3/2, so this is also a
disconnected design.
If we wish a BNAS PBIB design D(6,2,9,3), we obtain such a design by

adding BD,(6,2,3,1) to BD,(6,2,6,2), i.c.,

blOCk symbol: blS 515 624 bze b34 b35 614 b25 b35

1122 3 31 2 3
5 6 4 6 4 5 4 5 6

In this case,
NN = NN (1) + NN (2)
=3L— LR+ s

36(0, 1) =26,(0, 1) +6,(0, 1) =3/2, 36(1,0)=26,(1,0)+0,(1,0)=3,
30(1,1)=26,(1, 1) +6,(1, 1) =3/2.

Remark In the case of v=3x2,

B, 0 =(Js— )X ([~ 1) =

OO OO
Ok O=O O
—OOOoO—O
O~ OO O
CORrO—O
SO0 O -

So we obtain a basic BNAS PBIB design, BD,(6,2,6,2) associated with
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B(o,0, as follows:

block symbol: b14 b16 b23 bzs bge b45

112 2 3 4
4 6 356 5

NN'(4) =3Le— LR T o~ JsQ L+ J s
20,(0, 1)=2, 20,(1,0)=3/2, 20,(1,1)=1/2.
However, this design can be obtained by exchanging the names of the factors

and renumbering the correspending treatments in the design BD,.

APPENDIX

We list all basic BNAS PBIB designs and their efficiency factors for

4 "p20, k=2
(p1.02) '
v ", My in By r 7600, 1) r6(1,0) 70(1,1)
4 2,2 0,0) 2 1 1 1 0
0, 1) 2 1 0 1
1,0 -2 1 1 0
6 2,3 0,0) 6 2 3/2 2 1/2
(V)] 3 1 0. 1 1
(1,0) 6 2 3/2 0 3/2
9 3,3 0,0) 18 4 3 3 3/2
©,1) 9 2 0 3/2 3/2
1,0 9 2 3/2 0 3/2
10 2,5 0,0) 20 4 5/2 4 3/2
o, 1 5 1 0 1 1
1,0) 20 4 5/2 0 5/2
14 2,7 ©0,0) 42 6 7/2 6 5/2
©,1) 7 1 0 1 1
1,0) 42 6 7/2 0 7/2
15 35 (0,0) 60 8 5 6 7/2
©, 1) 15 2 0 3/2 3/2
1,0) 30 4 5/2 0 5/2
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70 (21, X, 85), (%1, X2, %3) ¢

o momems CPED s gy Ty D Gt Gy a1
8§ 222 ©0,O) 4 1 1 1 0 1 0 0 1
001 4 1 0 1 1 1 1 0 0
©L®» 4 1 1 o 1 1 0 1 0
©Ly 4 1 o0 o 0o 1 1 1 1
o 4 1 1 1 0 0 1 1 0
wony 4 1 o0 1 1 o0 0o 1 1
“L® 4 1 1 o 1 o 1 0o 1
12 223 (000 12 2 32 2 12 2 1z 0 32
o 6 1 o 1 1 1 1 0 0
©1L0 12 2 32 2 3z 2 12 2 172
©Ly 6 1 o o o 1 1 1 1
1,00 12 2 32 2 12 0 32 2 12
won 6 1 o 1 1 o 0 1 1
1,L0) 12 2 32 0 32 0 32 0 32
18 233 (000 3% 4 3 3 32 4 1 1 52
©01 18 2 0 32 32 2 2z U2 1/2
©1,0) 18 2 32 0 32 2z 12 2 12
©LYy 9 1 o o o 1 1 1 1
Loo 36 4 3 3 32 0 3 3 32
Loy 18 2 0 32 32 0 0 32 3/2
(1L,LO 18 2 32 0 32 0 32 0 32
20 225 (0,00 4 4 572 4 32 4 32 0 572
o1 10 1 o 1 1 1 1 0 0
©0,1,0) 40 4 52 4 572 4 32 4 32
©Ly 1 1 o o o 1 1 1 1
1L0,0) 40 4 52 4 32 0 52 4 32
o 10 1 o 1 1 0o 0 1 1
(LLO) 40 4 52 0 52 0 52 0 52
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