Complex Segregation Analysis
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During the last few years there has been an interest in models for qual-
itative attributes, where complex signifies that affection may be caused in
two or more ways [1-3]. These models have in common the prediction
of variable recurrence risks among families with given parental phenotypes.
Segregation analysis has covered only a few cases [4,5]. The present paper
extends segregation analysis to three complex models under two mode of

ascertainment.

1. Theory

Let ¢niz be the probabilily of a mating of genotypes j and £ when A pa-
rents are affected (h=0,1,2). Let m;, be the risk for affection when
parents are of genotypes j and k. (In this paper, we suppose that children
are enumerated after onset is complete, so that risk of affection may be
equated to incidence.) Then, under complete selection, the probability of

r affected among s sibs for an affection independent of birth order is
P(r;s,h)z(‘:) Zk Grir mix” (1—mjp)s=7, : (1)
7y

where 0°=1. Under incomplete selection, the probability of ascertaining
a sibship with r affected is 1—(1—=z)", where 0 <z =1 is the ascertainment

probability, assumed constant. Note that

§o<j>mjkr(l—mjk)s_rtl—(l‘"‘”)r]:l_ (IﬂmjkTC):
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(¢f. [5, eq. 3]). Therefore,

(1— (l—ﬂ)’]J_Zk Prix mim(1—mjz)s-r
I—Zk Pnin(l—mjprc)® '

P(r;s,h,m) = <:>

(2)

Among families with s children, r of whom are affected, the probability

that the (s+1)st child will be affected is

2 Grigmip (1 —myp)s-r
Q(f;s,}l) et . (3)
% Griamsp (1 —mjp)s-7

I

Equations (1~3) hold for any model, however complicated, which defines
@riz and mjy, independently of birth order. Equations (1) and (2) are fun-
damental to analysis of family data, while equation (3) forms the basis for
genetic counseling.

It is not difficult to derive @u;x under general assumptions, but, in prac-
tice, the solution for random mating with fertility of affected independent
of genotype is most important. Except for parents of unspecified phenotype
(h=?), it is not necessary to assume that fertility of affected is normal,
only that all genotypes of affected are equally fertile. Then, if bi 1s the
frequency of genotype j in the general population, the probability that an
affected parent (or individual) would have genotype j is a;j=p;f;i/A,
where f; is the probability that genotype j be affected and

A=§pffj

is the incidence. Similarly, the probablity that a normal parent (or individu-
al) would have genotype j is ¢i=pi(1—f;)/(1—A4). Thus, the two assump-
tions of random mating and uniform fertility within the phonotypes normal

and affected allow us to write



Shin: Complex Segregation Analysis 1¢5

Priz=cics (h=0)
=cjay (k=1 4)
—ajas (h=2)
=pipr (h=7?),

where only the last result assumes equal fertility of normal and affected.
If fertility is severely reduced by affection, the analysis should take A=0
rather than 2=7?, although for a rare trait the two results cannot differ by
much.

Models which assume that different loci act independently on f; are call-
ed discontinuous. Models which assume that different loci act indepen-
dently on some other wvariable, termed liability, which is not linearly
proportional to f; are called quasi-continuous. Sex effects may be incorporat-

ed into the p; and mj, but will be ignored in this paper.

2. Model 1: The Generalized Two-Allele Single Locus
Consider a gene G with frequency ¢ which determines risks ¢4-z, td+z
and z in the genotypes GG, GG’, and G'G’, respectively, where d is the
dominance of G, ¢ is the penetrance of GG, and z is the frequency of non-
heritable (sporadic) cases (table 1). The 3x3 matrix of risks m;; is

t+td-+2z
2

ttd+-2z t4+2td+4z td+22z (5)
2 4 2

td+2z
2

t+z td+z

M

(
|
|
=
|

td4z

Maximum likelihood analysis conveniently takes the parameters 4,d, ¢ and

x=z/4, which constrain the gene frequency

—td+ JPdE+A(1=x) (1—2d)t i d=e1/2.
(1—2d)t ? 1 # /29 >O:
q:

A(1—x)/t, if d=1/2, >0,
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0<4,d,t,x<1, and t+z< 1. Under incomplete selection, there is vir-
tually no information about 4, which must be estimated from other evi-
dence [(6).

We define the rank of a hypothesis as the number of parameters to be

estimated. The most important special cases of rank 2 are:

No phenocopies (x=0)
G dominant (d=1)
G recessive (d=0)
G additive (d=1/2)
GG completely penetrant (t=1—2)

The most important special cases of rank 1 are:
No phenocopies, GG completely penetrant (x=0, t=1)
G dominant, completely penetrant d=1, t=1-2)
G additive, completely penetrant (d=1/2,t=1-2)
No phenocopies, G additive (d=1/2, x=0)
G recessive, completely penetrant (d=0, t=1-2)
No phenocopies, G recessive (d=0, x=0)
No phenocopies, G dominant (d=1, x=0)

A hypothesis may be said to be better than an alternative of the same rank
if it has a smaller likelihood-ratio criterion,
XZ(L):Z Z Nsrh ln(nsrh/esrh) . (6)
LEXS)

(Barrai et al. [6]) where ngs, and e, are the observed and expected
numbers of sibships of size s with r affected from k affected parents, and
the sum is ovar all nonzzro values of ng4 and e;-;. By definition, e55=n4
P(r;s ,h), where ns, is the observed number of families of size s with 4

affected parents and P(r;s, h) is given by equation (1).
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The quantity
L= [T P(r;5,h)rsrh

Syryh

. * . ..
is called the likelihood and in the limit for large samples, approaches the
multinormal form ¢e-#/2, The hypothesis which maximizes L in a large body

of good data gives the best basis for genetic interpretation and counseling.

A hypothesis may be said to be appreciably better than an alternative
of lower rank if its likelihood-ratio criterion is smaller by at least 4,
However, only if the one hypothesis is a special case of the other can
statistical significance be asserted (for example, if the hypothesis that d=0
with 4 known and ¢, x iterated simultaneously gives X2=20, and the sub-
hypothesis that d=0, ¢ =1 with A known and =x iterated gives X2=25,
then the difference of 5 is distributed in large sample theory as X2,, with
P=.025).

Discontinuous models may be generalized further in two directions:
we may assume that any one of n loci can independently produce
affection (the genetic-load model) or that two or more loci interact
(epistasis). The first situation can be resolved for rare recessive genes by
consanguinity analysis, and more generally by finer phenotypic discrimina-
tion-ideally at the level of protein structure. The possibility of analyzing
epistasis is remote in man unless the effect of each locus can be recognized

separately (as for the Lewis-secretor interaction).

3. Model 2: Beta Distribution of Risk

A reasonable and convenient generalization of complex models is the
distribution introduced by Gini [7] and Skellam (8], which assumes that
the recurrence risk m varies among families with & affected parents according

to the beta density,

- D!
(f'n)=—(c_§!(?_c_1)! ml—1(1—m)&-C-l, ™

0<{<¢ and 0<m<1, where the symbols have the same meaning as in
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Morton et al. (3] but different from Morton (4]. Then the Gini-Skellam

distribution of r affected in families of size s is

P(rs, L, g):f: F(m) (;‘)mra_m)s-rdm
(OES) ®
5

The population incidence (the probability that the first child be affected;

the mean affection risk) for families with a given value of % is
(! _C
A_fom f(mydm=—¢-

Also, given h, the segregation frequency (the probability that the sib of

an affected singleton be affected: the mean recurrence risk) is

[ resmn _ gy
f: m fomydm  ETL

These are the special cases s=r=0 and s=r=1 of the probability that the

next child is affected after s sibs have been born, r of whom were affected:

1
Q(r;r)-——f‘; Jmym*1(1—m)s-rdm _ Lt
fo Fmymr(l—m)s-vdm §+s

)

Thus, we may substitute A and T for the parameters,

Under incomplete selection, the distribution of r affected becomes

- (Y
P(r;s,C, & ) :rzi}l[l—(l—n)rj<r+cr— 1><S—T+§—C— 1> . (10y

§—7r
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With incomplete selection, the estimation of 4 for given A is more difficult
under model 2 than for a specific discontinuous or quasi-continuous hypo-
thesis. Therefore, model 2 is most useful for parents of unspecified pheno-

type or under complete selection.

4. Model 3: The Polychotomized Normal Distribution of Liability

Falconer [1] considered an additive liability scale, ncrmally distributed,
one tail of which determines affecticn. This type of variation has been
called quasi-continuous [9). In the original derivaticn of Falccner’s model,
the phenotypic liability had a sharp threshold for affecticn. This seemed
impl ausible to Edwards (2], who intrccuced a different mccel which allcwed
the risk to exceed unity. Smith [10) shcwed that Falccrer's mcedel could
be derived by assuming a ncrmal distributicn cf genetic lizbility, acted cn
by a cumulative normal risk functicn representing envircrmental liability.
This removed any lingering doubts about the adequacy of Falccner’'s model
to represent affection caused by additive genetic liability. Attempts to fit
both Falccner’s and Ecwards’ mcdels to actual data revealed no advantage
in the latter (Mcrtcn et al. [3)). Tcgether with the cevice of polychoto-
mizing the normal districticn, which makes it possible to replace multiple
integration by summaticn, Smith’s derivaticn of Falconer’s mcdel makes it
the method of choice to represent quasi-continuous variation.

Let a normal distribution of genetic liability f(x) be partiticned into n

nonoverlapping classes, the kth of which has limits L;3<L;z and therefore

probability

br=QL1zx) —Q(Lzz) (;lHFl), (11)
where

Q(x) = 1/_l_f:e-ﬁ/z(zt.




110 ’ B R BT %
Let Ly=(Liz-+-L:x)/2. Assume that the genetic liability within this class is
a constant, which we take to be
xp=L, for —oco<lLyz, Lag<{co
=f(L11) /@ (Lx) for Lyy=o0
= f(L2) Q(Lar) for Liy=—co

The standardized normal deviate x, corresponds, in the distribution of gene-
tic liability with variance T, to xp+/T where T is the heritability. The

standardized deviation of Z, the threshold for affection, is

, Z—,"c‘k\/’]T
=TT (12)

{103, table 1), Therefore, the incidence in the population is
A=3 pQ (') =Q(2),
and the probability of liability class £ among affected individuals is

ar=pQ(x:") =Q(Z).

(Note that the symbols T, x; and Z have different meanings for models 1
and 3, but A4 is always the incidence).

Similarly, the probability of liability class & among normals is

ce=pe1=Q(x)1/(1—=4)
If one parent belongs to class j and the other to class £, the mean genetic
liability of the children is (v;4x:) /T /4, and the mean deviation of the
threshold is

. Z—(xitxw) VT4
ik = VI=T/2

This defines the risk of affection

mir=@Q (xiz") (13)
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With these definitions of p,a,¢, and m, we may use the equations of the
first section to perform a segregation analysis of Falconer’s model. For the
calculations to be accurate with large s, we must use many classes : we have
taken n=52 (corresponding to 50 equally spaced classes from —4 to 44 and
the two terminal classes) with the approximations of Hastings [11] to eval-

uate @(x") at

—4—{—.16(k——1)<xk<——4+.16k, for k=1, 2, ..., 50
x51=f(4)/Q(4), b1 =Q4),
x52=—f(4)/Q(4), bs2 :Q(4)-

It is convenient to estimate the parameters £ and 7T, the population
incidence and the heritability, respectively; note that 4 applies to the gen-

eral population, and not merely a specific value of % as in model 2.

5. Inbreeding Effects

Let the incidence be A-+BF, where F is the coefficient of inbreeding and
B is the genetic load. Morton [12, eq. 17] provided for quasi-continuity

the approximation
B=AT (Z*+1)/2, (14)

where T is the heritability and Z the threshold for affection. As A approach-
es zero, the ratio B/A becomes large and incapable of discriminating

between mutation and segregation loads.

Table 1, The Two-Allele Model

Genotype GG GG’ G'G’
Index, j 1 2 3
Frequency, p; 9 29(1—9) (1—9)?
Probability of affection, f; t+z - td+z z

Note: Risk in parametric population, A=g*+2g(l—g)td+z.
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For the generalized two-allele single locus, we have
B=g(1—q)t(1—2d) =¢qt— (1—=x) A. (15)
The B/A becomes large as g, x approach zero [13).
For any genetic model, complex segregation analysis predicts the effects
of inbreeding. This provides an independent test of the model, which is of

little power unless the inbreeding effects are large.

6. Affection in Relatives
In the most important case for genetic counseling, ego is the sib or child
of a proband and equation (3) gives his risk. Sometimes more remote re-
lationship is involved. If R is the coefficient of relationship, model 3 gives
as the recurrence risk(i.e., the probability that ego is affected, given a

proband of relationship R)

QIR=X ax Q=) (16)
where
X ,__Z-—-ka‘«/Tq
R Vicrm

(Smith, [103).

For the single-locus model, two coefficients are required, the relationship
R and the probability of double identity by descent K, where K =0 for un-
ilineal relatives, 1/4 for sibs, and 1/16 for double cousins. The recurrence

risk, if neither proband nor ego is inbred, is
QR K)= _Zkajpjkfk (17)
s

Here pjx is an element of the matrix P=(1—2R+K YTo+2(R—K )T, +K T,,
where the T, matrix is the conditional probability of K, given j, when

there are exactly n alleles identical by descent, and

@ 20(1—q) (1—¢)?)
To=| ¢¢ 2¢(1—gq) (1—q)% |,
L@ 2(1—¢) (1—g)?)
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q 1—g 0 ]
T=lg/2 12 (-9/2)
L0 ¢ l—qg )
(1 0 0)
T,= 0 1 1 J
Lo 0 1
(Li (14); Elston and Campbell (15]). (The matrices To, T;, T, correspond
to Li’s 0, T, I,respectively, and have no relation to the paremeter T used
in models 1,2, and 3). Thus, segregation analysis predicts recurrence risks in
more remote relatives which provide an independent test of the genetic

model, although with less power than the first-degree relatives used for

segregation analysis.

7. Discussion

Limited experience suggests that discrimination between discontinuous mo-
del 1 and quasi-continuous model 3 will often be difficult. Dominance and a
high ratio of recurrence risk to incidence favor model 1. Lack of dominance
and a low or moderate ratio of recurrence risk to incidence suggest quasi-
continuity, but do not rule out a discontinuous model, which, with more
parameters, is necessarily more flexible. Strong evidence for quasi-continuity
requires that goodness-of-fit be no better for a discontinuous model with
three parameters than for a quasi-continuous model with two. We doubt
that such evidence is often feasible, and a decision may have to be sus-
pended until more refined techniques of observation recognize major gene
effects, leaving a residual which must come more and more to approximate
quasi-continuity, even if the relevant familial factors are nongenetic.

Although the mode of inheritance may remain in doubt, complex segre-
gation analysis leads to useful estimates of recurrence risks for genetic coun-
seling. Here models with a significantly poor fit to the data are rejected.
Among the remainder, models with a minimum number of parameters are
preferred, and among these the models with the best fit to the data. When

two or more models of the same rank fit about equally well, in the absence
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of any firm decision about the mode of inheritance all relevant predictions
may be used as a guide to genetic counseling. For example, if three accep-
table models predict .09, .11, and .13 for a particular risk category, we
might give the risk as “between .09 and .13” or more simply as “about
117,

Complex segregation analysis provides more powerful tests of genetic
hypotheses and more reliable recurrence risks than can be obtained when
sibships of different compositions are pooled. The equations of this paper
have been incorporated into a computer program COMSEG, a description

of which is available from the author.

SUMMARY

Segregation analysis has been extended to several complex models for qual-
itative attributes under two modes of ascertainment, providing a basis for

genetic counseling.
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