ON COMPLETE VECTOR LATTICES OF ORDER BOUNDED LINEAR MAPPINGS

BY SANG-YOUN RHEE

Introduction.

When \(E \) is a vector lattice and \(F \) is an order complete vector lattice, the set of all order bounded linear mappings from \(E \) into \(F \), which is denoted by \(\mathcal{L}(E,F) \), forms an order complete vector lattice. (cf. [1]) We tried to find out some properties of \(\mathcal{L}(E,F) \) and its subspaces.

1. Preliminaries.

When a real vector space \(E \) is equipped with a partial order \(\leq \) having the following properties: if \(x \leq y \), then \(x+z \leq y+z \) for any \(x, y \) and \(z \) of \(E \) and if \(\alpha \) is a positive real number, then \(x \leq y \) implies \(\alpha x \leq \alpha y \), we call \(E \) an ordered vector space. We shall denote by \(E^+ \), the set \(\{ x \in E | x \geq 0 \} \). An ordered vector space \(E \) is called a vector lattice if there exist the supremum \(x \lor y \) and the infimum \(x \land y \) for every pair of elements of \(E \). Suppose that \(E \) is a vector lattice and \(x \in E \). We define \(x^+ = x \lor 0 \), \(x^- = (-x)^+ \) and call them the positive part and the negative part, respectively, of \(x \). The absolute value \(|x| \) of \(x \) is defined as \(x \lor (-x) \). It is easy to see that \(x = x^+ - x^- \); hence \(E = E^+ - E^- \) and that \(|x| = x^+ + x^- \). Let \(E \) be a vector lattice. A subset \(S \) of \(E \) is called order bounded if it is contained in some order interval \([x,y] = \{ z \in E | x \leq z \leq y \} \). \(E \) is said to be order complete if every order bounded subset of \(E \) has the supremum and the infimum in \(E \). A net \(\{ x_\alpha \} \) is said to order converge to \(x \) in a vector lattice \(E \) if there exist an increasing net \(\{ y_\alpha \} \) and a decreasing net \(\{ z_\alpha \} \) such that \(\sup \{ y_\alpha \} = x = \inf \{ z_\alpha \} \) and for any \(x_\alpha \), there exist \(y_\beta \leq x_\alpha \leq z_\gamma \). A subset \(S \) of \(E \) is said to be closed if \(S \) contains the limit of every order convergent net in \(S \). Suppose that \(E \) is an ordered vector space and that \(E \) is the direct sum of two linear subspaces \(M \) and \(N \). \(E \) is called the order direct sum of \(M \) and \(N \) if \(x \geq 0 \) and \(x = x_1 + x_2 (x_1 \in M, x_2 \in N) \) imply \(x_1 \geq 0 \) and \(x_2 \geq 0 \). A linear subspace \(I \) of a vector lattice \(E \) is called a
lattice ideal if \(y \leq I \) whenever \(x \in I \) and \(|y| \leq |x| \). A lattice ideal \(I \) of \(E \) is a band if \(I \) contains the supremum of every subset of \(I \) that is bounded above in \(E \). Let \(E \) and \(F \) be vector lattices. A linear mapping \(\varphi : E \to F \) is order bounded (order continuous, respectively) if it maps every order bounded set (order convergent net) in \(E \) to an order bounded set (order convergent net) in \(F \). The set of all order bounded (order continuous, respectively) linear mappings from \(E \) into \(F \) is denoted by \(\mathcal{L}(E, F) \) (\(\mathcal{L}_c(E, F) \), respectively) will be denoted by \(E^b \) (\(E^c \), respectively). A linear mapping \(\varphi : E \to F \) is positive if the image of every positive vector under \(\varphi \) is positive. This induces a partial order \(\geq \) in \(\mathcal{L}(E, F) \), which is defined by \(\varphi \geq \psi \) if \(\varphi - \psi \) is positive. F. Riesz verified the following facts: (cf. \([1]\)) If \(E \) is a vector lattice and \(F \) is an order complete vector lattice, then \(\mathcal{L}(E, F) \) forms an order complete vector lattice and \(\mathcal{L}_c(E, F) \) is a closed ideal of \(\mathcal{L}(E, F) \). Every closed ideal of an order complete vector lattice is a band. \(I \) is a band in an order complete vector lattice \(E \) if and only if \(E \) is the order direct sum of \(I \) and another band \(I' \).

2. Extension of order bounded linear mappings.

When \(E \) and \(F \) are complete vector lattices and \(I \) is a closed ideal in \(E \), every order bounded linear mapping: \(I \to F \) can be extended to the whole space \(E \) preserving the order boundedness.

Lemma. The projection of every order bounded set of \(E \) into \(I \) is order bounded in \(I \) and the projection of every order convergent sequence into \(I \) is order convergent in \(I \).

Proof. Every assertion follows from the fact that a closed ideal is a band and hence \(E \) is represented as an order direct sum \(E = I \oplus I' \).

Theorem 1. The natural restriction map \(\theta : \mathcal{L}(E, F) \to \mathcal{L}(I, F) \) defined by \(\theta(\varphi) = \varphi|_I \) (\(\varphi \in \mathcal{L}(E, F) \)) is a surjective linear mapping and \(\theta(\mathcal{L}(E, F)^+) = \mathcal{L}(I, F)^+ \).

Proof. For the first assertion of the theorem, it suffices to show that any \(\varphi \in \mathcal{L}(I, F)^+ \) can be extended to an element of \(\mathcal{L}(E, F)^+ \), due to the fact that both \(\mathcal{L}(E, F) \) and \(\mathcal{L}(I, F) \) are complete vector lattices and hence they are decomposed into positive and negative parts. Since \(I \) is a band, \(E \) is represented as an order direct sum \(E = I \oplus I' \). Define \(\bar{\varphi} : E \to F \) by \(\bar{\varphi}(x) = \varphi(x_I) \), where \(x \in E \).
On complete vector lattices of order bounded linear mappings

\[x_1 + x_2, \quad (x_1 \in I \text{ and } x_2 \in I'). \]

Clearly \(\phi \) maps every positive vector to a positive vector; hence \(\phi \in \mathcal{L}(E, F)^+ \). This gives the required extension. \(\theta(\mathcal{L}(E, F)^+) = \mathcal{L}(I, F)^+ \) is obvious since \(I^+ \subseteq E^+ \).

3. Dual mappings.

For any \(\varphi \in \mathcal{L}(E, F) \), define \(\varphi^* : F^b \to E^b \) by \(\varphi^*(f) = f \circ \varphi \ (\forall f \in F^b) \). Clearly \(\varphi^*(f) \in E^b \), and hence \(\varphi^* \) is well defined. Furthermore, \(\varphi^*(f) \in E^\epsilon \) if \(f \in F^\epsilon \) and \(\varphi \in \mathcal{L}_\epsilon(E, F) \).

Lemma. If \(\varphi \in \mathcal{L}(E, F) \), then \(\varphi^* \) is \(\sigma(F^b, F) - \sigma(E^b, E) \) continuous. (cf. [2])

Theorem 2. If \([a, b] \) is an order interval in \(F^b \), then \(\varphi^*[a, b] \) is weak*-closed in \(E^b \).

Proof. We shall first show that \([a, b] \) is weak*-compact in \(F^b \). We note that \(\sigma(F^b, F) \) is the topology on \(F^b \) induced by the product topology on \(R^F = \prod R_x \), where each \(R_x \) is the real line. Therefore, it suffices to show that \([a, b] \) is compact in \(R^F \). Let a net \(\{a_i\} \) converges to \(a \) in \(R^F \), where each \(a_i \in [a, b] \); or equivalently, \(a_i(x) \to a(x) \) for all \(x \in F \). Then clearly \(a \) is linear. Moreover, for any \(x \in F^+ \) we have \(a(x) \leq a_i(x) \leq b(x) \), which implies \(a(x) \leq a(x) \leq b(x) \). Hence \(a \) is an order bounded linear functional and \(a \in [a, b] \). Therefore, \([a, b] \) is closed in \(R^F \). We shall reach the conclusion by showing that \([a, b] \) is a subset of a compact subset of \(R^F \). Denote the set \(\{f \in R^F : \forall x \in F, \ a \in [a, b] : a(x) = f(x) \} \) by \([a, b] \). Since \([a, b] \) is a subset of \([a, b] \) \((x^+ - x^-) \), which is bounded in \(R^1 \), \([a, b] \) is compact in \([a, b] \) is compact by Tychonoff and it contains \([a, b] \). Hence \([a, b] \) is compact in \(R^F \). By lemma \(\varphi^*[a, b] \) is weak*-compact in \(E^b \), and hence weak*-closed since \(\sigma(E^b, E) \) is Hausdorff. This completes the proof.

Corollary. If \([a, b] \) is an order interval in \(E^b \), then \(\varphi^*[a, b] \) is weak*-compact in \(E^b \).

Proof. An order interval of \(E^b \) is identical with that of \(F^b \). For, consider the order interval \([a, b] \) in \(F^b \), where \(a, b \in F^c \). If \(z \in [a, b] \), then \(\theta \leq b - z \leq (b - z) + (z - a) = b - a \in F^c \). Since \(F^c \) is a band in \(E^b \), \(b - z \in F^c \) and hence \(z \in F^c \). Therefore, \([a, b] \subseteq F^c \). By theorem 2 \(\varphi^*[a, b] \) is weak*-compact in \(E^b \).
But since \(\varphi[a,b] \subseteq E^* \) and \(\sigma(E^*, E) \) is the subspace topology induced by \(\sigma(E^*, E) \), \(\varphi[a,b] \) is weak*-compact in \(E^* \), and hence weak* closed. It is not difficult to show that all the theory discussed in this work can be applied also in the \(\mathcal{L}_n(E, F) \).

References

