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ON SOME FIXED POINT THEOREMS

By R.N. Mukherijee

1.1 Introduction.

In [1] Ray has given a theorem on fixed point of mappinzs in a metric space.
Theorem 1is the following.

‘THEOREM A. Let T, and T, be maps, each mapping a complete metric space
(E,d) into itself such that |

(i) d(T1x, sz)Sa'd (x, v) 3 where 0<a<l and x,y belorg to E (x#y) and

(11) there is a point xy in E such that any two consecutive members of {x, =T x,,
2o=T %x;, x3=T %, x;,=Tox3, -} are distinct, then T, and T, have a unique
common fixed point in E.

We give below the definition of e-chainable metric space as in reference [2].

DEFINITION. A metric space (E,d) will be said to be e-chainable if for every
x, y belonging to E there exists an é-chain, i.e. a finite set of points x=x, =x,,
% -, %,=y (n may depend both on xand y), such that d(x,_;, z)<e, (/=12

e, 7).
We prove next the following theorem.

THEOREM 1.1. Let E be a complete e-chainable metric space; and let T', and T,
be two maps each mapping E ‘into itself such that of 0<d(x,y) <&, then,

D d(Tx, Ty)<ad(xy); i=1,2. | |

(D d(Tx, Ty)<od(x,3); i#].
where in (1) and (i) x, y belong to E (x#y) and 0<a<l. Also T, and T,
satisfy the condition (ii) of theorem A then T, and T, have a common fixed
point in E.

PROOF. Since (E,d) is e-chainable we define for x,y belonging to E
1
.de(x,y)=inf El d (x; %,_4),

where the infimum is taken over all e-chains %, %, %, -, x joining x,=x
and x,=y. Then d 1s a distance function in E satisfying:
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(L) d(x, y)<d(x, 3
(2) d(x, y)=d (%, ¥) for d(x, y)<e.
From (2) 1t follows that a sequence {x}, x”EE is a cauchy sequence with respect
to d, if and only if it is a cauchy sequence with respect to 4 and is convergent
with respect to d, if and only if it is convergent with respect to d. Since (E, d)
1s complete therefore (E, d,) is a complete metric space. Moreover the following
is true.
Given x,y in E and any e-chain Xop Xps Xostts X, with x,=x and x,=Y such
that d(x,, x;_;)<e (7=1,2,--, #) we have (if » is even, say #=2)
d(T %y Tx))<ad(xy %) <&
d(Tyx,, Tix)<ad(x, x)<e
so that T',x,, T'x,, T,%, form an e-chain for T'x, and T',x,. Similarly if # Is odd(say
n=3) we can show that T',x,, Tox;, T %5 T,x; form an e-chain for 7' xj I'o%s.

1*0°
Condition (i) is also necessary which can be seen by taking #=4.

Combining all the cases atove it can ke shown that
£

Xy X5 X5 o+, X =3 being an arbitrary e-chain,
therefore we have
' (T x, Ty)<ad(x, 3,

and since 7', and T2 also satisfy the condition (ii) of theorem A therefore by the

conclusion of theorem A we have the required result.

THEOREM 1.2. Let E be a complete c-chainable metric space; and let T and T,
be two maps each mapping E into itself. If there exists two integers p, and p. such

that tf 0<d(x, y)<le, then

(1) d(Tf"x, Tz-pfy)_"éad(x, y); i=1,2;

D) d(T %, T)<od(x, y) 1 i#] ;
where in (1) and (i1) x,yEE (x5#£y) and 0<x <1. Also let T";‘ and ng salisfy the
cordition (11) of theorem A, then T, and T2 have a common fixed point. |

PROOF. Set Sl"—-T‘f‘ and Sz=TgE . Then by theorem 1.1 there exists a unique
fixed point x such that S {x)=S,(x)=x., I e._,Tf‘ (x)—:r—Tg"“' (x). From which it
follows that T‘f‘“(x):Tl(x), which inplies that Tf’ (Tl(:a:)‘)le(x)', since T’;‘
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has a unique fixed point, therefore T',(x)=x. Similarly it follows that T',(x)=x.

THEOREM 1.3. Let E be a complete e—chainable metric space. Let T, and T, be
two mappings of E into itself and suppose there exists a mapping K of E into

itself such that K has a right inverse K _'1(3'. e., a function K such that K K =7,
where I is the identily mapping of E) and if 0<d(x, y)<e, then

() d(K~'TKx, K~ T,KN<ad(x, y)3i=1,2;
(i) d(K T, Kz, KT Ky)<od(x, 5) ; i#] :
where in (1) and (1) x, y&FE (x#y) and 0<a<1. Also suppose I{_'ITIK and K_ITZ.
K satisfy the condition (i1) of theorem A. Then T, and T, possess a common fixed

point which s unique.

PROOF. Set K —lTlK =81 and K _szK :Sz, then S, and S, have a common
fixed point which is unique, by theorem 1.1. i.e., K _lTlK (x)=x=K _ITZK (x)

from which we get, KK _ITIK (x)=K (x), therefore Tl(K (x))=K(x). Similarly
T,(K(x))=K(x), in other words T and T, have a common {fixed point K (x).

Next we give a theorem on sequence of mappings and their fixed points.

THEOREM 1.4, Let (E,d) be a complete metric space and let Ti, and Ti be two

sequences of mappings each mapping FE into itself such that ;

d(Tyx, TiN<BA(T}x, ©)+d(T2y, »)

where all 5,s are <—:2l— and positive, and x, yEE (x7#y) (=1, 2, ) Let T and

T be mappings such that ﬁ;lim d(T;lex, T'%)=0 and lim d (Tﬁx, T?x)=0, for all x in

k—00o

E. Also B,—f8 (0<8 <—%—) as k—oo, Then T and T have a common fixed point

(say w). If u, for a fixed k is the simultaneous fixed point of T}, and T3 (which exists:

because of a theorem in [4])) then lim %, = U

kR—oo

PROOF. To prove the first part of the theorem we have only to show that.

T' and T° satisfy the inequality (¥*) as given below.
Now,

d(T'x, T*)<d(T*x, Tix) +d(Tks, T3 +d (T2, T)
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<d(T'%, T %) +d(T2y, T9)+B8,1d(Tyx, ©+d(T4y, )
<d(T'x, Th)+d(Th. T +B,1d(Thx, T %)

+d(T'x, 2)+d(T3y, T'y)+d (T3, )
therefore as k—oo, since
d(T}ex, Tlx)—a-O and also d(TEx, Tgx)-——rO

we have |
d(T's, T*)<Bd(T'x, x)+d (T, )} *)

Then by the theorem given in [3] 7! and T° both have a simultaneous fixed

point in E (which we denote by # say). Now to prove that lim #,=u we proceed
k—o00

as follows: Since # 1s in E, fixing z=n,; we form the following sequence

xl:T?];u (u), ;\:‘2:=Til (:Cl), xSZTHi(xZ), x4:Tiu (x'g): ‘o

then after little calculation as done in [4], it can be shown that

B, \*
Ay 5, )<(125 ) 40 T, )

:Erom' this it follows that

k
7 1
dcxk: xk_l_p) S l_rﬁd(u, T”u (Zﬁ))

s

"
- where 7= 1-—?8 ;
%o

therefore there exists #, such that lim x,=#%, . Now to show that

koo
Tiu (2, ) :%Hu-———Ti (%, )
We need the followinz inequality
d(“n; Tin (u,))=<d(u,, x,)+d(x, Tiu (Z&m))
=d(u,, ) +d(T> (x,_D, Th ),

where we choose %, to be even positive integer.

. Therefore

du,, T: (u,))<d(u,, £)+8,{d, 1, T2 (x,_ ) +dCu,, T\ @,)))

e, (1-8,)du,, T, W)I<du,, £)+8,d(x,_, 1)

: 1 :
and letting k—co, we can prove that T, (#,)=u, . That having proved we start

- with the following inequality,
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d(u,, T, (u, N<d(u,, x)+d(x, T, (,))
=d(u,, T, ()+d(T, W), T: (x,))

<d(u,, T, @)+B, {d@T, @)+dCu,, T2 (u,)))
i. e.,

(1~B,)d(u,, T2 (u,)<d(u,, T'@)+dT @), T, @)+6,d, T, )

1, €.,

(1-B,)dCu,, T, (u,)<dCu,,0)+dT W, T, @) +8,dT W, T, @)

therefore as ny—oo, d (,,, #)—0 + which completes the proof.

2.1 In this section we give certain fixed point theorems on a generalized
complete metric space. We give below the definition and the characterization of
a generalized complete metric space as given in [5]. Theorem B and C men-

tioned below have also been given in [5].

DEFINITION. The pair (E,d) is called a generalized complete metric space if E
1s a non-void set and d is a function from EXE to extended real numbers

-satisfying the following conditions:
(DO) d(x,3)=0
(DY) d(x,y)=0 iff x=y
- (D2) d(x, y)=d(y, ¥)
(D3) d(x, »)<d(x, ©)+d(z, »

(D4) every d-cauchy sequence in E is d-convergent, 1.e.,

if {x } is a sequence in E such that lim d(x, x,)=0, then there is an x&SE

ht, ii—00

with lim d(x,, x)=0. For convenience we will say that a pair (£, d) is a

n—0o

generalized metric space if all but (D4) of the above conditions are satisfied. Let

{(E, d,)|ac0} be a family of disjoint metric spaces. Then there is a natural
way of getting a generalized metric space (E,d) from {(E,, d a,)la:EO} as
follows.

For any x, y&FE define

d(x, y)=d (x, ) if x, y&EE  for some a &0
=+oco  if €F, and y € E, for some a, 8 E O with a#4.
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Clearly (E, d) is a generalized metric space. moreover if (E_, d,) is complete:
then (F, d) is a generalized complete metric space. The main purpose of the
above procedure 1s to show thaf the above method is the only way to obtain
generalized complete metric spaces.

Let (E, d) be a Generalized Complete Metric Space. Define ~ on E as follows,
x~vy iff d(x, y) <o, Then ~ is an equivalence relation on E. Therefore £ 1is.
decomposed (uniquely) into disjoint equivalence classes £ , a&0. From henceforth

~ we will reserve the term ‘Canonical decomposition” for the type of decomposition

as shown above,

THEOREM B. Let (E, d) be a gekemlz’zed metric space. E=U{E _|a€O0} the
canonical decomposition and dazd IEQ,XE " for each dEO. T hen

(a) for a0, (E,, d ) is a metric space. |

(b) for any o, BE0 with a#p53, d(x, y) =+ for any x& E_ and yEEﬁ.

(c) (E, d) is a generalized complete melric space iff for each «&O0, (E,. d,)is

a complete metric space.

THEOREM C. Let (FE, d) be a generalized wmetric space. E=UlE, a0} the
canonical decomposition and let T . E—F be a mapping such that d(T(x), T(9))

< (*) whenever x, yEF and d(x, y)<co. Then T has a fixed point iff T =
T\E, . E —FE_ has a fixed point for some a&O.

We note that (*) is necessary for T to be a mapping from Ea—arEa.
We prove next the following theorems.

THEOREM 2.1. Let (E, d) be a generalized complete melric space; E=UI{E,|
a&O0} be the canonical decomposition. Let T\ . E—E and T, . E—F be two mappings:

Such that .
(2) d(Tyx, T,)<Bld(x, T,X)+d(y, T} for all x,yEE and 0<B<—-,
(b) d(Tx, T,y)<d(x, y) for all x, yEE (x#y), i=1, 2
d(Tx, T;y)<d(x, y) for all x, yEE(xF#y), i#];
if there exists an x,&E such that d(x, T,(x,)) <o for i=1 or 2 then fbr some =0,

the restrictions

T 'TliEa : Ea—+Ea and T,,: TzlEa . E —E,

lax *

satisfv the condition (a) above.
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PROOF. Let d(x; T,(x))<oo, then both z, and T,(x)EE, for some a,&O.
Because of (b) we have if ek,
d(Tx), T1x))<d(x, x,) <00
also d(Tox;, T1xy) <d(x;, %5) <
and therefore T,(E,)CE, and T,(E, JCE,. From which it follows that T

and. 7T, satisfy the condition (b) in an.

20,

THEOREM 2.2. Assuming the same type of hypothesis as in theorem 2.1 cbove
let x=FE and consider the sequence of successive approximation
1,=%, T1(%) =%, 2,=T5(%;), %,=T1(x3), 25=T (%), """
Then the following alternative holds: either
(A) for every m=0, 1, 2,-, one has d(x_, %, . 1)="100
or (B) the sequence {x,} is d-convergent to a simultaneous fixed point of T, and
T,

PROOF. If (A) does not hold then for some m
d(%,, %, 1) <o
letting x, =%, the theorem 2.1 ShQWS'that Tl(Ea)CEa and T,(E£,)CE, where
E, 1s the complete metric space containin; Therefore by the theorem men-

tioned in section 1 of the present note also given in [4], the sequence x,, x,,_,, "

is d-convergent to a simultaneous fixed point of 7', and T, ,, This implies that
(B) holds. |

COROLLARY. Assuming the same hypothesis for the case of mappings T\ =T,=

T (say), let x&F and consider the sequence of successive approximation with initial

value x,

x. Tx T’x. T°x, -, T'x,

then following altermative holds, either
(A) for every m=0,1,, one has d(T"zx, Tme)_—_-[—o?

174 (B) the sequence, x, Tx, Tgx, oo, T"x, -+ s d-comvergent to a fixed
point of T.

PROOF. Proof i1s in the same line as in theorem 2. 2.

Suppose T be a mapping from a metric space E into itself. Also supposc T
satisfies the conditions (AQ) and (Al) below.
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(A0) d(Tx, Ty)<ad(x, Tx)+Bd(y, Ty)+rd(x, y)
where 0<a+8+1<1.
(A1) d(Tx, Ty)<d(x, y), for all x, y € E(x#y)

then from a theorem of Reich [6] it follows that such a 7T has a unique fixed
point in E.

THEOREM 2.3. Let E be a generalized complete metric space. Suppose T be a
mapping from E into itself such that it satisfies condiiions (AO) and (Al) above.
Let x€F and consider the sequence of successive approximation:

Xy =X, Tx1=x2 ' szl'-:xS ; T3xl-_—x4,
then the following alternative holds, either
(a) for every m=0,1,2,-, one has d(x,, x, )=

oy
(b) the sequence {v,} ¢s d-comvergent to a fixed point of T.

PROOF. Proof is similar to the proof of theorem 2.2 above; only in this case

we apply finally the theorem of Reich [6].
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