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1. Introduction.

Bell polynomials {13] are defined as

where & is a constant, and g is some specified function of x.

Shrivastava [17] has derived from above the polynomials defined by

__ _—hg d \n kg
(1.2) G”(k, g)=e (x P )e .
Recently, the author [1] has studied a class of polynomials defined by
(1.3) - Tj’k(x, 7, p):x_aep ITQ’;{xﬂe—p J"r}l.

where QIExk di . Note, however, that a slightly different class of polynomials

was studied independently by Srivastava and Singhal (cf. [20], p.75, Eq. (1.3)).
In this paper, we extend our study by introducing the polynomials defined by

(1.4) G (h, g, k)ze_th:ekg,

where h, k2 are constants and g is any function of x. |

For k=0 and %£=1 the above polynomials reduce to the polynomials defined
by (1,1) and (1.2) respectively and for g(x)=calogx—px’, h=1 they reduce
to the polynomials defined by (1.3). It may be of interest to study poly-
nomials of type (1.4), since these polynomials may also be regarded as the
generalization of Laguerre, Hermite and Bessel polynomials, Truesdell polynomials.
(7], Bell polynomials [13], and of the polynomials studied by Chandel [1],
Chatterjea [2,3,4], Chak [6], Gould and Hopper [8], Singh [14], Singh and
Srivastava [16], Shrivastava [17], and Srivastava and Singhal [20].

2. Operational results.

We can casily show that
2.1) FQ@ P f(0)} =e* P F (@, +4'¢)f(x); g'=Dg (.
Taking f(x)=1 and F (Qx)=.Q’:,. we get
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(2.2) - G (A, g; k)= [Qx+xkkg’]"-1.
Consider .
e M@ ) " f() =" (0 + 1 hg’ ) F(x)

=(Q,+x"hg)"f(x).
For brevity, let
(2. 3) ' Qxfl—xkhg’:D.
Therefore
1 —~hg 1 hg
(2.4) D {f(x)})=e —Q {e”f(x)}.
Particularly, if f(x)=1, then we have |
(2. 5) | O {1} =G (h, g, k).
Also
(2.6) G, _(h, g, )=G (R, g, k).
We can also prove the following result:
n ”—
2.7) 0" {0} =m;0( " )™ (w9 ™™ ().
If v=1, formula (2.7) yields
(2.8) O =2 (1, )02y ),
that is, |
(2.9) D":EO( ;)D"—m {I}Qf .
whence
1
(2. 10) "= mzzo( "G, (h g, BQT .
Again, if we write
(2. 11) | o= O,
then |
(2.12) G, .(h g B=0"{G,(h, g, B} =0"{G,(h g, B}
Using (2.10), we have
1 .
(2. 13) G,.,(h g B)= ];J( )G, (h g, DQAG, (h, g, )}

Now consider

” 1 o —hg m —hg
Q' (G, (h g, D=0 (™" ¢ :
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;"'( ) ”— ;{ hg}Qm-!-J{hg}

=33(")6,_(~h & BG, (b 2. B.

7=0
“Thus we have

H ' n 44
In particular, for m=0, we have
” o ]
(2. 15) o) {1}_.;_?0( J. )G _ L~h g, BD’.
from which we obtain the following operational result:
n I/ B j
(2. 16) & =2 6, (—h g B D’
We also obtain the following operational relationships-
) o ]I (@)t
(2.17) Pl 0](G_(h, g, Bi=E G, .(h g B
]] (b.) n!
=1 77
(2.18) (1-;:@)—1{1}:%@”(;2, g B 1<,
H=
(2.19) (1+20)" {1}—L "G, (h, g, B,

() _ U, & (-4
2.20) L@ {1) - }*>:0 SETO} ()G (h g, B

and

f

(2. 21) -+ (W =(1)G,_(h & B
7=0

Similarly, several results can be obtained as the particular cases of (2.17).

3. Generating function. |
From the definition (1,4), we can 1readi1y have

A
| - .?'J—Zl 4 )”tn —hg (@,); hg
(3.1 P G (h, g, B)=e " F [(5) 10 le*.
I7 (bj)nﬂ'
7=1
Particularly, if we let A=y, a.=b, j=1,2,3,++, 4 (or p), it reduces to
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o0 n —
(3.2) 26,0, g, B)-Lo=e""0" ),

# |
Now using the elementary formula (cf., e.g., [20], p.76, eq. (1.12))
1

R e —

(3..3) N FO) =fla{l— (k=D ™1 T FL), ks,
we obtain the generating function

S ] 0 /4
(3.4) exp [hlglx{l—E~1tx"Y T - g(DN =G, g, DL,

Replacing Z by z‘/(!e-—l)xk_l, we get
1 1

- ET - g(®)}1.

oo !

BB B Gy 207 Gl £ B=explhlg Q-1

A ain by using (2.10), we have

n

==t ()6, (h g, D" F)

n=0 7! m=0
=3 . "T G (h g, k)fl tﬂ: Q7 f(x)
n=0 . m=0 MW,
Therefore,
(3.6) U@ =G, (h g B ).
Now using formulas (3.1) and (3.4), we establish
1
(3.7) &P {F(0)} =explhlg w{l— (k—Dtx* ™} ~F=T1 = g()}]

1
ey

Xfix{l—(k— l)txkfl}
For f(x)=1, the above result reduces to

- 1

3.8) ) =explhlg lx{l—k~1Dtz* 1} T FT] = g0}

which is substantially the same as (3. 4). |
Again for f(x) =G, (k, g, k), we have

| o £t
(3.9) EO m G,...Ch g k)

1 |

— ——

=G, [, glx{l—Ck—1itx" ) ) B eexplilg i1~ =Dt~ T 1= g0}l

Also
(3.10) > G, g B
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1
=G, [h, g(x(1—8)"F=T), k] - explhlg(x(1~1) " F=T)— g()}].

Using (3.5) in the above result, we further obtain

(3_ 11) E t”Gn+m(k, g, k)
=0 pt(k—1)" 5F 71"

OO

I, | 1
o E : ! Gf Ck!.gr k) G h’ — T
20 a8 D), A

Starting from the generating function (3.4), we can establish the following
formulas:

| n
(3.12) G, (htl, g D=2 ()G, . (h g B)G,(, g, k.
(3.13) G (b, g+f, D=2 (},)G,_, (1 g )G, (h £, B,
. m Gﬂ'(k'r g: k)
8.14) G (hy+h,+hy++h , g, B)=n 7~
( ) ”( 1 2 3 " £ ) & n1+nz+;+n_=uj£1 (ﬂ}-)!
and
m GH' » ;
(3.15) G (h g, tg,+g;+ +g,  B)=n! > 7o & b

Nyt Nyt n=n j=1' (%})'

Again by making an appeal to generating relation (8.4), we can get the

following recurrence relation: .
(3:16)  £'DG(h, g, B)=G,, (h, g B)—x'hg’(x)G,(h, g, k).
‘The above relation can also be obtained by putting m=1 in (2. 12).

4. An extension of (2.10) and (2.16).

A combination of (2.10) and (2.16) will show that

- noono, m - ]
(4.1) 0= 2 ( 12 )Gl g i) EO( G, _ (=l f. B 0,
Again by combining (2.10) and (2.16), we can write
1 n " m - ]
(4.2) D = Eo( " VG mh, g, B > (")G,_{~1. & & 0.
and
(4.3) 0 =m:0( "G,_ (h g, k)}é‘o( )G (=h £ B o

=3 (2)6,_,(h . b3 (7 )Gy =1, ) .
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By using (8.12) and (3.13), these last two results reduce to

” r o, J
(4.4) D=2 ()6, ; (=L g, B O
and
” n J
: - D = p (h, g—71, :
(4.5) D=2 (5 )6, e=f 0
Particularly for f(x)=1, we get
(4.6) G, g W= (7 )G,_;(h=1, g, DG, & B
and
@D G g b= ()G, h g~f DG, f, B).
j=0
From (4.4) and (4.5), we can also obtain
”n n n—l 7
4, 8 — — " (Ch— _
(4.8) D=0 EO(_, )G, (1=1, &, o
and |

(4.9) o DH—E(”)G (h 5o
: D= B=n )G , —F, o

Recently, Lahiri [10, 11, 12] studied the generalized Hermite polynomials H n m. (%)
More general sequences of polynomials have also been studied in the literature.
See, for instance, Srivastava [18,19].

Here we shall make extension of (2.10) and (2.16) to connect G, (h, g, k) with

'Hn’m' v(:c).
If we consider

g+ -—‘%:6 and 6—I—xm+1kg’=¢,_

then (2.10) and (2.16) will take the followinz forms respectively:

(4.10) 0'=3 (] )G,_,(h g m+1)0,
and
(4. 11) | Gﬂ=§0 ( f )Gn_r(—k, g, m—l—l)qﬁf.
Now by making an appeal to (8.2) of Lahiri [11]
m—l—l__d_ r x—nﬂ.ﬂ y ﬂ(x) x—n+rmmr |
(x dx ) ( n' “")_ (n—rm)! H”"‘"”’=”"”(x)'

we can get the following results from (4.10) and (4.11) :
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¢’p*_ x Hn_miv(x) ]

{4.12) o
mln(p [",:_ ) x—-n+rmmf
= (7) (n—rm)! By r,mo Gy, &+ 1)
and
-—n'—i-rm 7
(4, 13) n—mr)] ey u(:c)
_r 4 | - J’x—H, u(x)
=3 (7 )6, (~h & mA D ¢/ (S ]
also

7! n,m, v

5. Explicit form.

The use of the relaf.ion (1, (2.8)]
N S [ . ] .
oF fa@)= D & gy (-1/(5 )T @)
s=0 S. dzs 7=0 7
helps In obtaining the explicit form of these polynomials. Indeed we have

G (h, g, k)=e—hg£2’: Cad ’

= DTS (13 ) g1 TR" g
0 §=0

s= S.'

Therefore the explicit form for G (h, g, k) 1is

B n _1 $1 8 S s s—'_n .
6.1 G g =2 =98 2 (-1( ) le@0)* 7] gl

From (5.1) and the elementary result (cf. [20], p.76,eq. (1.10))

@ 1) =42 ) G-y

b

if follows at once that G,(k, g, £) is a polynomial of degree » in g el

« is the highest power of # In g(x).
Also by virtue of (5.1), we notice that G, (&, g, k) is a polynomial of degree #
in A,
6. A Wronskian for &, (h, g, k).

Lakshman Rao [9] has given a Wronskian in an attempt to prove turan’s

where -
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inequality for Hermite polynomials. Chatterjea [5] and Singh [15] have given
similar Wronskians for Hermite polynomials and the generalized Hermite
function [8] respectively. In this section, we shall derive a Wronskian for

G (h g, R).

THEOREM. If

(6. 1) a,(h, g, k)=the determinant of [G, i—; (kg B, 0<i, j<m,
and |
(6' 2) . W{Gﬂ(kr 8> k): G?I—-l(k’ g- k)r e Gn_m(kr g, k)}

=the determinant of [Qi G, _ j(k, g, k)], 07, 7<m,

then
(6.3) ok, g, )=WIG (h, g, k), G,_(h, g, B),+,G___(h, g, B)}.

PROOF. Interéhanging m and 2 In (2.13), we have
. m - g
(6.4) Cppinte & D=2 (5 )G, ;0 & 02, G,(h g, .

In the above result put m=1, and then replace in succession # by z—1,#—2, «--,
n—m, whereby we obtain the equivalent expressions for the constituents

Gn_i_]_(kr 8 k)r Gn(k: & k)r Gn_]_(k: & k)r "y Gn-—m-[-l(k’ & k)

of the second row of ¢ (&, g, #). We shall call these steps a “Process”. Thus

after first “Process”, we obtaln

o, (h, g, k)= the determinant of the matrix (6.1) with the second row having
its 7th term QG e j(k, g, k). Repeating this “process” (m—1) times by putting
m=2,3,4, -, m and solving the determinant each time, we finally get (6.3).
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