LATTICE STRUCTURE OF GENERAL TOPOLOGICAL EXTENSIONS

By T. Thrivikraman

§ 0. Introduction.

In [7], the author has characterised the epireflection $\beta_E X$ of a space X in an epireflective full subcategory E of the category $T2$ of all Hausdorff spaces, as the space of 'the largest imagive determining type' of nets in X modulo a natural equivalence, topologised in a natural way. In this paper we define E-extensions of E-regular spaces and study the lattice structure of the collection of all E-extensions under a natural order. They form an upper-complete semi-lattice. But further study is rather difficult in such a general set up. So we put some restrictions on the property E (we do not distinguish between 'properties' and 'full subcategories') and/or on the spaces for which E-extensions are sought. We introduce the notion of generating families gE or E and study them in detail. In particular, we obtain certain partial results to the problem of when one-point-E-extensions exist. We also give certain equivalent forms of being hereditarily E when E has a strongly hereditary pseudoconvergent determining type of nets.

The author is grateful to Dr. T. Soundararajan for the encouragement given during the preparation of this paper.

CONVENTION. E is a full subcategory of $T2$ which is also assumed to be epireflective unless otherwise stated. All spaces considered are objects of $T2$.

§ 1. Preliminaries.

1.1. DEFINITION. A space X is said to be E-regular if it is homeomorphic to a subspace of a product of spaces in E.

1.2. DEFINITION. Let X be a space. If Y is in E such that X is homeomorphic to a dense subset of Y, we say that Y is an E-extension of X.

1.3. DEFINITION. Let E be a subcategory of $T2$ not necessarily epireflective. Let NE associate to each space X, a class of nets $NE(X)$ in X such that X has property E if and only if every net in $NE(X)$ converges to some point in X.
Then NE is called a determining type of nets for E or that E is determined by NE.

REMARK. Determining types of nets have been extensively studied by the author in [7]. We quote the following results from [7].

1.4 RESULT. Let E be a full subcategory of $T2$. There exists a determining type of nets NE for E if and only if the empty space as well as the singleton space has E.

1.5. DEFINITION. The type of nets N is called imaginary if whenever $f : X \rightarrow Y$ is continuous, $f(N(X)) \subseteq N(Y)$, where $f(N(X)) = \{f \circ s | s \in N(X)\}$.

1.6 RESULT. A full subcategory E of $T2$ is epireflective if and only if there exists an imaginary determining type of nets NE for E.

NOTE. $NE(X) = \{s | s$ is a net in X such that if Y is in E and $f : X \rightarrow Y$ any continuous map, then $f \circ s$ converges in $Y\}$, is 'the largest imaginary determining type of nets' for an epireflective subcategory E of $T2$.

1.7 REMARK. In [7], the author has proved that the epireflection $\beta_E(X)$ is the space of equivalence classes of $NE(X)$ topologised in a natural way.

§ 2. E-extensions of E-regular spaces and generating families for E.

2.1 DEFINITION. Let X be an E-regular space and let $aX, a'X$ be E-extensions of X. Then we say that $aX \leq a'X$ if there exists a continuous map from $a'X$ into aX, with identity on X.

2.2 THEOREM. The collection of all E-extensions of an E-regular space X forms a complete upper semi-lattice under the partial order generated by the pre-order defined above.

PROOF. The proof is analogous to that in [1] for the corresponding theorem for compactifications.

Let $\{a_iX\}_{i \in J}$ be a family of E-extensions of X. To show that there exists an E-extension aX of X such that $aX = \bigvee_i a_iX$. Let $f : X \rightarrow \prod_i a_iX$ be defined as $f(x) = (a_i(x))_{i \in J}$ where $a_i(x)$ denotes the image of x in a_iX under the homeomorphic embedding. It can be easily checked that f is a homeomorphism(cf. [5] Theorem 2.1). Now $clf(X) = aX$ is an E-extension, being a closed subspace of a product of spaces in E. Further $aX \geq a_iX$ for each i in J since the projection from aX
Lattice Structures of General Topological Extensions

onto \(a_iX \) is continuous and is identity on \(X \). Also if \(a'iX \) is an \(E \)-extension of \(X \) such that \(a'iX \geq a_iX \) for every \(i \), then \(a'iX \geq aX \) since the product continuous function \(II_i f_i \) suffices where \(f_i : a'iX \to a_iX \). Thus \(aX = \bigvee a_iX \).

NOTE. \(\beta E X \), the epireflection of \(X \) in \(E \) is the largest \(E \)-extension in this order. In particular, when \(X \) has \(E \), then \(X \) is its own largest \(E \)-extension.

REMARK. To get more information about the semilattice in this most general set up is rather difficult. So we introduce certain restrictions on the property \(E \) and/or on the spaces for which \(E \)-extensions are sought. We introduce the notion of a generating family for the property \(E \).

2.3 DEFINITION. A collection of spaces \((Y_i)_{i \in I} \) is called a generating family for \(E \) if the following happens: a space \(X \) has \(E \) if and only if \(X \) is homeomorphic to a closed subspace of a product of spaces \((Y_i)_{i \in K}, K \subseteq J \). If there exists a finite (respectively singleton) generating family for \(E \) then \(E \) is said to be finitely (respectively singly) generated.

EXAMPLE. (i) If \(I \) is the closed unit interval of reals, then \((I) \) is a generating family for compactness.

(ii) If \(J \) is the open unit interval of reals, then \((J) \) is a generating family for realcompactness.

(iii) The discrete dyad \(D \) forms a generating family \((D) \) of being zero dimensional and compact.

NOTE. It is not hard to see that a property \(E \) is finitely generated if and only if singly generated. Some singly generated epireflective full subcategories of \(T2 \) are studied by S. Mrowka in [5].

2.4 RESULT. The generating families for a property \(E \) form an upper complete semilattice under inclusion. This semilattice possesses minimal elements if and only if \(E \) is singly generated. It is not necessarily a lattice even when \(E \) is singly generated.

The first two statements can be proved easily. To justify the last statement, consider \(E=\text{realcompactness} \). If \(J=(0,1) \), then it is known that \((J) \) is a generating family for \(E \). It can be fairly easily proved that if \(K=[0,1] \), then \((K) \) is also a generating family for \(E \). \((J) \cap (K) = \emptyset \) is clearly not a generating family.

CONVENTION. In the rest of the paper \(gE \) stands for a typical generating family.
for E.

2.5 REMARK. Let E be a closed hereditary productive property. If we define $NE(X) = \{s|\text{for any } Y \text{ in } gE \text{ and for any continuous function } f : X \rightarrow Y, f \circ s \text{ is convergent in } Y\}$, then it can be seen that NE is an imagive determining type of nets for E. Hence or independently it is seen that NE is precisely NE_1, the largest imagive one.

2.6 DEFINITION. A subset A of X is said to be \textit{gE-embedded} in X if every continuous function on A to any space Y in gE extends continuously to X.

2.7 RESULT. If a closed subset A is \textit{gE-embedded} in X, and β_EX is the largest E-extension of X, then $\text{cl}_{\beta_EX} A = \beta_EA$.

The proof is easy and omitted.

NOTE. The converse of Result 2.7 is not true. Example: $E=\text{realcompactness}$, $gE=(J)$ where J is the open unit interval of reals and X is a non-normal real-compact space.

2.8 DEFINITION. An E-regular space X is said to be \textit{gE-normal} if every closed subset of X is \textit{gE-embedded} in X.

NOTE. gE-normal \Rightarrow normal.

2.9 REMARK. Herrlich, H. [3] has defined a space to be E-normal if every disjoint pair of closed subsets in it is E-separated, i.e., if whenever A and B are disjoint closed subsets of X, there exists an E-space Y and a continuous function $f : X \rightarrow Y$ such that $\text{cl}f(A) \cap \text{cl}f(B) = \emptyset$. It can be easily seen that gE-normal \Rightarrow E-normal for any generating family gE of E. Notice that any E-space is E-normal; but not necessarily gE normal. For example, $R_1 \times R_i$ where R_i is the set of reals with lower limit topology is realcompact and (realcompact)-normal in the sense of Herlich. But it is not gE-normal for any gE since it is not normal. Notice that in particular (R)-normal if and only if normal. (cf. [2] 3D1 (48)). Thus again, a converse of result 2.7 is not true; however a partial converse can be given as follows:

2.10 RESULT. If X or β_EX is gE normal, then whenever $\text{cl}_{\beta_EX} Y = \beta_EY$, we have Y is gE-embedded in X.

The proof is easy and omitted.

NOTE. Now we come back to the consideration of the collection of E-extens-
ions, and in particular, to the problem of existence of one-point-E-extensions.

2.11 DEFINITION. A regular space X is called locally E if each point of X has a basis of E-neighbourhoods.

2.12 THEOREM. Let X be E-regular and βEX regular. If X is open in βEX, then X is locally E. On the other hand, if X is locally E and gE-normal for some generating family gE, then X is open in βEX.

PROOF. Suppose X is open in βEX; since βEX is regular, it follows that X is locally E. Conversely, suppose X is locally E. If X has E, then trivial, since $\beta EX=X$ in that case. If X does not have E, then X is open in βEX-X converging to a point p in X. Then for each j in D, $s(j)$ is a net in $NE_i(X)$ converging to a point $s(j)$ in βEX. Consider the product net P in X corresponding to s. This product net P converges to p. Take a neighbourhood V of p in $\beta EX-X$ such that $V\cap X$ is closed in X and has E. The net P is eventually in $V\cap X$ (say) after $(m_0,f_0)\in D\times \prod_{i\in D}E_i$. Consider $s(m)$ where $m>m_0$. It can be easily seen that this net which is a member of $NE_i(X)$ is eventually in $V\cap X$. But since X is gE-normal, by remark 2.5, it follows that $s(m)\in NE_i(V\cap X)$. Now $V\cap X$ has E so that $s(m)$ converges inside $V\cap X$, which is a contradiction. Hence any net in $\beta EX-X$ converges in $\beta EX-X$, if at all it converges. Hence X is open in βEX.

NOTE. X is open βEX does not imply that X is gE normal for any gE. For example, suppose X is realcompact and non-normal. Then trivially X is open in $\nu X=X$. But since X is not normal, it is not gE-normal for any gE where $E=\text{realcompactness}$.

QUESTION. If X is E-regular and locally E, βEX is regular and if either X or βEX is gE-normal, for some generator gE of E, then does it follow that X is open in βEX?

2.13 DEFINITION. A property E is collapsible if for every space X which is a proper open subset of βEX, the identification of $\beta EX-X$ to a point has E.

2.14 RESULT. Let E be collapsible. Let X be E-regular and gE-normal. Suppose X does not have E. Further let βEX be regular. Then X has a one-point-E-
extension, if and only if X is locally E.

2.15 REMARK. If X has E and has a one-point-E-extension, then X is not E-closed. (we call a space E-closed, if it is closed in every space with E containing it). On the other hand, if X is not E-closed, then a sufficient condition that a one-point-E-extension exists is that the union of a compact subset and any subset having E has again E. We will describe certain such situations in then next section.

§ 3. Pseudoconvergent determining types of nets and Hereditarily E spaces.

3.1 DEFINITION. A determining type of nets NE is called strongly hereditary if whenever $A \subseteq X$, then $NE(A) \subseteq NE(X)$ and furthermore if s is a net in A such that $s \in NE(X)$ then $s \in NE(A)$.

3.2 DEFINITION. A type of nets N is called pseudoconvergent if every net in $N(X)$ is pseudoconvergent for any X.

CONVENTION. In this section we consider epireflective subcategories E of $T2$ such that E has a strongly hereditary pseudoconvergent determining type of nets NE.

EXAMPLES. (for details see [6])
(i) $E=$compactness; $NE=$ {Universal nets} or $=\{weakly\ open\ universal\ nets\}$
(ii) $E=\alpha'$-spaces; $NE=\{\sigma$-directed weakly open-universal nets$\}$.
(iii) $E=\alpha''$-spaces; $NE=\{\sigma$-directed strongly closed-universal nets$\}$.

3.3 THEOREM. If NE is an imagine strongly hereditary pseudoconvergent determining type of nets for E and if $\beta_E X$ is regular for an E-regular space X, then X is open in $\beta_E X$ if and only if X is locally E.

Proof easy and omitted.

3.4 THEOREM. If $X=Y \cup Z$ where Y has E and Z is compact, then X has E.

PROOF. Let $s \in NE(X)$. If s is frequently in Z, then it has a convergent subnet and since s is pseudoconvergent, it follows that s converges. If s is eventually in $cZ \subseteq Y$, then $s \in NE(Y)$ since NE is strongly hereditary. Now since Y has E, s is convergent. Hence X has E.

3.5. NOTE. See Remark 2.15.

3.6 THEOREM. The following are equivalent on a space Y:
(a) Y is hereditarily E, i.e., every subspace of Y has E.
(b) For each space X, if there exists a map $f: X \to Y$ such that $f^{-1}(y)$ is compact
Lattice Structures of General Topological Extensions

for each \(y \) in \(Y \), then \(Y \) has \(E \).

(c) Every space of which \(Y \) is a one-one continuous image, has \(E \).

(d) For each point \(y \) in \(Y \), \(Y - \{y\} \) has \(E \).

PROOF. Use Theorem 3.4 and proceed along the same lines as those of Theorem 8.17 in [2] (122).

To show (c) implies (a), the technique employed is the same, by noticing the following: Given a subspace \(Z \subseteq Y \), by enlarging the topology of \(Y \) making \(Z \) and \(Y - Z \) open, the new space obtained is \(E \)-regular.

3.7 COROLLARY. If \(f : X \rightarrow Y \) is one-one and continuous and if \(Y \) is hereditarily \(E \), then \(X \) is hereditarily \(E \).

3.8 NOTE. If every subspace of \(Y \) has \(E \), and if \(\text{card } Y = m \), then every discrete space of cardinality \(\leq m \) has \(E \).

Mar Athanasius College,
Kothamangalam 686666
Kerala, India.

REFERENCES