A THEOREM ON JOIN VARIETIES OF GROUPS

By R. D. Giri

The join of two f. b.* varieties of groups need not be f. b. is a well-known fact, but no example is known so far to testify this.

Bryant has, however, characterized that,
(i) If \mathcal{Z} is a variety of groups and \mathcal{V} is a nilpotent variety, then the join variety $\mathcal{Z} \vee \mathcal{V}$ is f. b. iff \mathcal{Z} is f. b. see [1]
(ii) Let \mathcal{Z} be a f. b. variety and \mathcal{V}, a vaughan Lee variety (a subvariety of $\mathcal{N}_{\alpha \leq \alpha' \leq \alpha'}$). Then the join variety $\mathcal{Z} \vee \mathcal{V}$ is f. b. (see [2]).

Denoting varieties by doubly underlined Roman Capitals and using the notations of [2], we give the following general characterization of the join of two varieties.

This includes (i).

THEOREM. If V is a variety in which an identity $[[x_1, \ldots, x_m], [x_{m+1}, x_{m+2}]]$ is satisfied and \mathcal{Z} is arbitrary then $\mathcal{Z} \vee \mathcal{V}$ is f. b. iff \mathcal{Z} is f. b.

PROOF. (\Rightarrow) $\mathcal{Z} \vee \mathcal{V}$ is f. b. by assumption. Moreover, since \mathcal{V} is f. b. (see [3]), $\mathcal{Z} \wedge \mathcal{V}$ is f. b. because as subvariety it again satisfies the law $[[x_1, \ldots, x_m], [x_{m+1}, x_{m+2}]]$. Hence by Lemma 4 of [1] \mathcal{Z} is f. b.

(\Leftarrow) Conversely for $m \geq 2$, the laws,
(a) $[[x_1, y_1], [x_1, y_1], [x_1, y_1]]$
(b) $[[x_1, \ldots, x_{m+1}], [y_1, \ldots, y_{m+1}]]$

can easily be seen to be the consequences of the law $[[x_1, \ldots, x_m], [x_{m+1}, x_{m+2}]]$. Hence the set of laws \mathcal{V} defining the variety \mathcal{V} includes $\gamma_{m+1}(X')$, $\gamma_{m+1}(X^{'}')$ where $X, \gamma_{m+1}(X'), \gamma_{m+1}(X^{'}')$ have their usual meanings as in [2]. In other words \mathcal{V} is the subvariety of $\mathcal{N}_{\alpha \leq \alpha' \leq \alpha'}$. Since \mathcal{Z} is f. b. by assumption in this case, therefore, in particular by (ii) $\mathcal{Z} \vee \mathcal{V}$ is f. b.

The author is grateful to his supervisor prof. M. A. Kazim for encouragement and help in the preparation of this note.

* f. b. = Finitely based.
REFERENCES