Kyungpook Math. J. Volume 14, Number 1 June, 1974

A NOTE ON BLOCK CIRCULANT MATRICES

By Chong-Yun Chao*

The purpose of this note is to present a simple proof for the main theorem in [3]. Our method is similar to the one used in [1].

Let $C = (c_{ij})$ be a $n \times n$ circulant with c_{ij} belonging to the complex number field K, and $i,j=0,1,\cdots,n-1$. Let $f(x) = \sum_{j=0}^{n-1} c_{0j}x^j$. It is well known that the eigenvalues of C are $\mu_k = f(\omega^k)$, $k=0,1,\cdots,n-1$, and the eigenvector corresponding to each μ_k is a column vector $\{\omega^0, \omega^k, \omega^{2k}, \cdots, \omega^{(n-1)k}\}$ for $k=0,1,\cdots,n-1$ where $\omega = \exp\{2\pi i/n\}$ (in fact, ω can be any primitive n-th root of unity). Let $P = (p_{ij}) = (\omega^{ij})$, $i, j=0,1,\cdots,n-1$, $\Omega = (1/\sqrt{n})P$. Then P is a Vandermonde matrix and Ω is a unitary matrix.

Also,

$$\Omega^{-1}C\Omega = \overline{\Omega}'C\Omega = \text{diag } \{\mu_0, \mu_1, \dots, \mu_{n-1}\}$$

where diag $\{\mu_0, \mu_1, \dots, \mu_{n-1}\}$ denotes the diagonal matrix with $\mu_0, \mu_1, \dots, \mu_{n-1}$ on the diagonal, and Ω' and $\overline{\Omega}$ denote the transpose and complex conjugate of Ω respectively.

The main theorem (Theorem 5) in [3] states as follows: Le^{*}

$$A = \begin{bmatrix} A_0 & A_1 & \cdots & A_{m-1} \\ A_{m-1} & A_0 & \cdots & A_{m-2} \\ \vdots & \vdots & & \vdots \\ A_1 & A_2 & \cdots & A_0 \end{bmatrix}$$

be a m×m block circulant with each A_i being a n×n circulant matrix. Let $P=(p_{ij})$ = (ω^{ij}) be the n×n matrix as before. Let r_0 , r_1 , ..., r_{m-1} be the m-th roots of unity. If Q is given by the following matrix:

^{*}This work was done while the author was at Carnegie-Mellon University (under a faculty exchange program between Carnegie-Mellon University and the University of Pittsburgh). The author wishes to thank Professor R. J. Duffin for helpful discussions.

$$Q = \begin{bmatrix} p & p & \cdots & p \\ r_0 p & r_1 p & \cdots & r_{m-1} p \\ \vdots & \vdots & \cdots & \vdots \\ r_0^{m-1} p & r_1^{m-1} p & \cdots & r_{m-1}^{m-1} p \end{bmatrix}$$

We have $Q^{-1}AQ=D$ with D being a matrix of diagonal blocks D_0 , D_1 , ..., D_{m-1} where each D_i is diagonal. The diagonal elements are given by the eigenvalues of the matrix $\sum_{k=0}^{m-1} A_k r_i^k$. Moreover, given any nm×nm diagonal block matrix D=diag $\{D_0, D_1, \dots, D_{m-1}\}$ where each D_i is a n×n diagonal matrix, $A=QDQ^{-1}$ is a block circulant with each block being a circulant matrix.

(We note that r_0 , r_1 , ..., r_{m-1} are m-th roots of unity implying $r_j = r^j$, j = 0, 1, ..., m-1 where $r = \exp\{2\pi i/m\}$).

In [3], a proof for three block case (m=3) is given, and it states that the proof for the general case is omitted since it is just an extension of the three block case. Here we present a simple proof for the general case by using elementary properties of Kronecker product of matrices.

The proof goes as follows: The matrix A is equal to

$$I \otimes A_0 + T \otimes A_1 + T^2 \otimes A_2 + \dots + T^{m-1} \otimes A_{m-1}$$

where T is the $m \times m$ permutation matrix corresponding to the permutation

$$\begin{pmatrix} 0 & 1 & \cdots & i & \cdots & m-1 \\ 1 & 2 & \cdots & i+1 & \cdots & 0 \end{pmatrix}$$

 $I=T^m$ is the identity matrix and \otimes denotes the Kronecker product. Clearly, each T^k , k=0, 1, ..., m-1, is a $m\times m$ circulant.

Let $R = (s_{ij}) = (r^{ij})$ be a $m \times m$ matrix with $r = \exp\{2\pi i/m\}$ and $\Gamma = (1/\sqrt{m})R$. Then, again, R is a $m \times m$ Vandermonde matrix and Γ is a unitary matrix. By using elementary properties of Kronecker product of matrices (e.g., see pp. 68-70 in [2]), we have

$$(\Gamma \otimes \Omega)^{-1} A(\Gamma \otimes \Omega)$$

$$= (\Gamma^{-1} \otimes \Omega^{-1}) (I \otimes A_0 + T \otimes A_1 + \dots + T^{m-1} \otimes A_{m-1}) (\Gamma \otimes \Omega)$$

$$= (I \otimes \Omega^{-1} A_0 \Omega) + (\Gamma^{-1} T \Gamma \otimes \Omega^{-1} A_1 \Omega) + \dots + (\Gamma^{-1} T^{m-1} \Gamma \otimes \Omega^{-1} A_{m-1} \Omega)$$
(1)

Since each A_k is a $n \times n$ circulant, $\Omega^{-1}A_k\Omega$ is a diagonal matrix, denoted by

 E_k , with eigenvalues of A_k on the diagonal for k=0, 1, ..., n-1. Since each T^j is a $m \times m$ permutation matrix, $\Gamma^{-1}T^j\Gamma = \text{diag} \{r^0, r^j, r^{2j}, \dots, r^{(m-1)j}\}$ for j=0, 1, ..., m-1. Thus, (1) is equal to, i.e.,

$$\begin{split} & (\varGamma \otimes \varOmega)^{-1} A(\varGamma \otimes \varOmega) \\ = & I \otimes E_0 + \operatorname{diag} \{r^0, \ r^1, \ \cdots, \ r^{m-1}\} \otimes E_1 + \cdots + \operatorname{diag} \{r^0, \ r^{m-1}, \ \cdots, \ r^{(m-1)(m-1)}\} \otimes E_{m-1} \\ = & \operatorname{diag} \{ \sum_{k=0}^{m-1} E_k, \ \sum_{k=0}^{m-1} r^k E_k, \ \sum_{k=0}^{m-1} r^{2k} E_k, \ \cdots, \ \sum_{k=0}^{m-1} r^{(m-1)k} E_k \}. \end{split}$$

This means that the *i*-th diagonal element is a diagonal matrix denoted by D_i , and the diagonal elements of D_i are given by the eigenvalues of the matrix $\sum_{k=0}^{m-1} A_k r^{ik}$.

Now we show that $A = (\Gamma \otimes \Omega) D(\Gamma \otimes \Omega)^{-1}$ is a block circulant with each block being a circulant matrix and $D = \text{diag}\{D_0, D_1, \dots, D_{m-1}\}$ where each D_i is a $n \times n$ diagonal matrix. We need the following:

LEMMA. If $D_p = \text{diag} \{d_{00}^p, d_{11}^p, \dots, d_{(n-1)(n-1)}^p\}$ then $F_p = \Omega D_p \Omega^{-1}$ is a circulant for $p=0, 1, \dots, m-1$.

PROOF.
$$(\Omega D_p \Omega^{-1})_{ij} = \frac{1}{n} \sum_{k=0}^{n-1} \omega^{ik} d_{kk}^p \bar{\omega}^{jk}$$
, and
$$(\Omega D_p \Omega^{-1})_{(i+1)(j+1)} = \frac{1}{n} \sum_{k=0}^{n-1} \omega^{(i+1)k} d_{kk}^p \bar{\omega}^{(j+1)k}$$

since $\omega \bar{\omega} = 1$, $(\Omega D_p \Omega^{-1})_{ij} = (\Omega D_p \Omega^{-1})_{(i+1)(j+1)}$ for i, j = 0, 1, ..., n-1 (the subscripts are taken modulo n).

Hence each $F_p = \Omega D_p \Omega^{-1}$ is a circulant for p=0, 1, ..., m-1.

Now, by using our Lemma,

$$\begin{split} A &= (\Gamma \otimes \Omega) D(\Gamma \otimes \Omega)^{-1} \\ &= (\Gamma \otimes \Omega) \; (\text{diag } \{D_0, \ D_1, \ \cdots, \ D_{m-1}\}) \; (\Gamma^{-1} \otimes \Omega^{-1}) \\ &= (\Gamma \otimes \Omega) \; [\text{diag} \{1, \ 0, \ \cdots, \ 0\} \otimes D_0 + \text{diag} \; \{0, \ 1, \ 0, \ \cdots, \ 0\} \otimes D_1 + \cdots \\ &+ \text{diag} \{0, \ 0, \ \cdots, \ 0, \ 1\} \otimes D_{m-1}] \; (\Gamma^{-1} \otimes \Omega^{-1}) \\ &= \Gamma(\text{diag} \{1, \ 0, \ \cdots, \ 0\}) \Gamma^{-1} \otimes F_0 + \Gamma \; (\text{diag} \; \{0, \ 1, \ 0, \ \cdots, \ 0\}) \Gamma^{-1} \otimes F_1 + \cdots \\ &+ \Gamma(\text{diag} \{0, \ \cdots, \ 0, \ 1\}) \Gamma^{-1} \otimes F_{m-1}. \end{split}$$

Hence, by using (2), the ij entry in the matrix A is

$$\frac{1}{m} (r^{i0} 17^{j0} F_0 + r^{i1} 17^{j1} F_1 + \dots + r^{i(m-1)} 17^{j(m-1)} F_{m-1}),$$

and the (i+1) (j+1) entry in the matrix A is

$$\frac{1}{m}(r^{(i+1)0}1r^{(j+1)0}F_0+r^{(i+1)1}1r^{(j+1)1}F_1+\cdots+r^{(i+1)(m-1)}1r^{(j+1)(m-1)}F_{m-1})$$

Since $r\overline{r}=1$, the ij entry in A is equal to the (i+1) (j+1) entry in A for i,j =0, 1, ..., m-1 (all the ij entries are taken modulo m). Hence, A is a block circulant.

The matrix Q in the theorem is our $R \otimes P$.

Then
$$Q^{-1} = \frac{1}{mn} (R^{-1} \otimes P^{-1})$$
, and
$$Q^{-1}AQ = \frac{1}{mn} (R^{-1} \otimes P^{-1}) A(R \otimes P)$$
$$= \left(\frac{1}{\sqrt{mn}} (R^{-1} \otimes P^{-1})\right) A\left(\frac{1}{\sqrt{mn}} (R \otimes P)\right)$$
$$= (\Gamma \otimes \Omega)^{-1} A(\Gamma \otimes \Omega).$$

REMARKS. It is indicated on page 19 in [3] that R and P are Vandermonde matrices and the determinant of a Vandermonde matrix is well known. However, Q is not a Vandermonde matrix. But the determinant of Q, det Q, is equal to $\det(R \otimes P) = (\det R)^n (\det P)^m$ (see p. 70 in [2]). G. Trapp pointed out to me that, using the same method, one can deal with a block circulant each whose entry is again a block circulant, ..., etc.

University of Pittsburgh Pittsburgh, Pennsylvania 15260 U.S.A.

REFERENCES

- [1] Friedman, B., Eigenvalues of Composite Matrices. Proc. Cambridge Philosophical Soc. 57 (1961), 37-49.
- [2] Murnaghan, F.D., The Theory of Group Representations, The Johns Hopkins Press, Baltimore, 1938.
- [3] Trapp, G., Inverse of Circulant Matrices and Block Circulant Matrices, Kyungpook Math. J. 13 (1973), 11-20.