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THE LOGARITHMIC (L) MEAN OF THE DIFFERENTIATELD
DOUBLE FOURIER SERIES

By R. N. Pandey

1. The double Fourler series corresponding to 2z-periodic function f(x, y& L[—m,
T ~7m, 7] 1S given by

(L. 1) | f(x, y)~32 A (x,9)
m=0n=0
- where
Amﬂ-—-lm(amﬂ cos mx cos #y—+b,,. sin mx cos ny
+c,,,COS mx sin ny+d,, sin mx sin 7y)

with the usual meanings of 4, @ etc.
We write (1. 1) as
(1.17) f(x,y)~ le ; (a, b, ¢, d; 2, ¥,

Differentiating (1.1’) once with respect to x, once with respect to y and suc-
cessively with respect to x and y, - we get the following three allied or conjugate
series after ignoring the numerical coefficients so introduced

(1.2) %%(d. —¢, —b, a; x, y) m=$i?5mn(x, y)
(1- 3) 11 11 ('_bl —a, d, '-_C; Xs y)mnzl-l; %Cmn(x: J’)
(1'4) %l]:l‘ccr dl —da, _'b; X, J’)m,;:?zlpmn(x: J’)

We call the series (1.2), (1.3) and (1.4) the first, second and the third allied
‘series respectively. But if we retain the numerical coefficients these are

(1,2) | 22 mn B

(L 3)

~Mg ~Msg -
~Mg ~[Mg -

(1.47)
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Let us write

Bty 0)=— [fa+u, y+0) +f(x—u, y+0)+f(x+u, y=0)+f(x—u, y=0))

oo OO
le__‘. 2 A, cOsmx cosny

@(u, v)———[f(x+u yt+o)—f(x—u, ytov)—flx+u,y—v)+f(x—u, y—v)]

o0 OO0 )
~D D an Sin 7y SIn 17y
1 1

6,4 V) =[x, y+0)+ G, y=0) = f(x—t, y+0) = Fx—u, y=0)]

o0 GO

~3222C,  Sin mu cos ny
I 1

Qo(u, v)= i [f(x+u, y+ov)—fxt+u, y—o)+f(x—u, y+v)—f(x—u, y—v)]

L

m .
~2223D_ COS musSinny
1 1

The conjugate function’s associated with the series (1.2), (1.3) and (1.4) are
respectively

T T
f(x,y)=lim ;lz—ffgé(u, v)cot #/2 cot v/2 dudv

€y
’ g, &,

f1(x,3)=lim _ff¢1(“ v)cot /2 dudv

E EE—*O e €
1 2

f (x,y)=lim lffgbz(u v)cot v/2 dudv

E -—I
& £, &

provided the limits exist.

DEFINITION. A double series >33 w, ., with partial sums S, 1s said to be

summable by logarithmic method of summability (L) to the sum S, if for q,» € (0, 1),

. o oo S g7
lim {log(1—¢)log(1—7)} Z Z ——=5

as g, 7r—1—0. We write it as ZZUW:S(L)

2. Corresponding to the 2rz-periodic and Lebesgue integrable function f(x), the
Fourier series and its conjugate series are respectively given by

(2. 1) —1—-a > (acosux+b sinnx)=2>2_A (x)
2 0 n=1 " n
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(2.2) f]l (b, cos nx—a, SIn nx)=2_8B, (x)

The derived series of (2.1) is
(2.3) Zan(x)

Adopting the notations

$(8) =3~ { fx+D)+f(x—1)—2s)
PB=f(x+t)—f(x—1)

HD)=¢@)=D, gt)= 421@/2”

Mohanty and Nanda [1] proved the following theorems:

THEOREM A, If

ﬁ k(;e) du:.g(log—}—) as t—0"
{

then the sequence (nB.} is summable (L) to Dzt

THEOREM B. If

T
f IEE:O\ du=0 (log%—) as t—0"
t

then the series ? nB is summable (L) to C.

In another paper Nanda [2] established the following theorems.

" THEOREM C. If

It
f p(u) dza=a(10g*§—) as z‘—-+0+
U
f
then the series (2.1) i.e. ZAH is summable (L) to the value S.

THEOREM D. If

1
fg;u) duzo(log-}—-) as t—-+0+
¢

then the series (2.3) i.e. ?n B, is summable (L) to the value C.

Clearly the theorem D is an improvement upon the theorem B.
Nanda and Das [3] have further improved the theorems A,C and D.
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3. Regarding (L) summability of double Fourier series (1.1), Singh [4] has
established the two variable analogue of the theorem C. Also the present author
(5] has extended the theorem 1 of the paper [3] to the case of double Fourier
series. The object of the present paper 1s to generalise the theorems A and D to
the case of the two variables in the form of the theorems A’ and D’ to be given
below.

[et us define

h(u, v)=¢(u,v)—D, gu,v)=—5 sirfu zgz/tzgn /2 —C

where D and C are functions of x and .
In fact we propose to establish the theorems:

THEOREM A’. If

nr

(3. 1) f (LA, ) dudvzo(log L .16 —1—)
{

Uy S 4

)

as s,1—0", then the sequence {mn B, } ts summable (L) to Dn—%

THEOREM D’. If

(3.2) G(s, )= f f 802). qudv=o(log- - log4)
s i |

as s,1—0", then the series (1.2) i.e. 2 2_ mn an 7s summable (L) to the valic C,

4. We require the followinz results for the proof of the theorem A’.
(a) Let £=arcsin(1—¢g), n=arcsin(l1—7)
4=1-—27 cos t+72 -
Q(r,)=Q()=rsint/4, olr,t)=p() =-—%—cot 1/2—Q()
so that

R O =r{(r+rDcost—2r} /A

jf =0’ ({)=—(1- r)cosec’t/2/44—27(1—#)2cos*t/2/ £

1t is known that [1], [6]

{Q(n’) =0, Q(7n)= 0(—,1‘?*)

o(m)=0, p(m)=0(1/7)
{Q’(t)=o(1/n2) (0<t<n)
o' (D =0{(1—7)*/tD} =0(7*/tH)
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(b) Let

s
(s, = J¢Cu, v)dudy
00

Evidently with 2(u,v)=d(u,v)
(4.3) (3. D [¥ (s, D) =0( st logL- 1ogzi—)

Proof of theorem A’-without affecting the generality of the theorem A’, we
may as in [3] assume D=0. In such a case

k(u, v)=¢(u, v)

The theorem will be proved if we show that

A4 V(t)=V(x; ¢,0)=333 mnB,,q"7"/mn

=l

oo OO 1 )
21_,21_. B _q'r h—o(log T—g - log l—r)

we have

Viz ==z | [¢(s.5) Qg ) Q. 1) dsd

00
nn mn §&txn &7

== [J+[[+]]+]])

0 O0np 00

R

4
1
'EZ]_Z

Here

I= f [(s,0 H—cot s/2 cot 3/2——%—001: £/2 0(s)

—-é—-cot%pcz)wcs)p(t)]dsdz
=1, [+ o1, 51, , say.

where

T
Ilil=ffq5Cs, cot s/2 cot t/2 dsdt

(4.6) =o(log—é— - log . )-—o(log"l lq - log: 1_1'_7 )

by (4.3) and noticing that cot #/2 behaves as -—?—
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I =[ [¢Cs.t) o(s) o(t) dsdt
§
=¥ (s, Do, - [ (s, D] 0’ ()ds
3

— [ [ (s, D) ;o' Odt+[ [W (s, D0 (o' Ddsd
n § 7

T

T
4
¢ log—+—¢[tlog—3-o(n’/t )t )+o( nlogL---L slog—;—o(ég/s“)d_s)g
)

=Y 77
:

+
o
/"_"\ ’,-"_'"n.\

T T
1 o, 1 1 Ayl e 2, 4.4 )
& nlog g log 7 én)-l—o(éj;fstlog . 10?:, 0(E“n</s*t*)d sdt

7
_ 1 1
4.7) -—o(log T—g log—— )
FIA {8 ¢
, 1
I, 2=0(ff (.:t ) ds dt)
§ 7
— o log——+log-L- )= 1 og—2
(4. 8) -—o(log g log 7 ) o(log - log—+— j
similarly
_ 1 1
(4.9) I1_3—0(10g T --log—l_r)
From (4.6), (4.7), (4.8) and (4.9), we get
| | 3 1L
(4.10) Il—o(log =7 -log l—r)

Again. Iintegrating by parts [7]

§ 7
qurffqé(ss t)Q(QI s)Q(?’l t)ds dt
0 0
E .
= (7€ MAOQM] -Qm) [ ¥ (s, MQ (5)ds
0

n § 7
-Q® [TE DY ®dt+ [ [U (s, HQ (HQ (Dds dt
0 00
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~[e(ertos-bron - ol ) o 3-)] o) foontoton )

7
XO(é—)ds—l—o(—é—-/)o o(ét log—— log———) ( :12 )dt
& 7
+Of00(st log-——lo -}—) 0(—317)-0(*}2—}0( )dsdz‘
(4.11) =0(10g%— -log*—;‘l?)=0(10% li qﬁ-log 1_}_,,)
Also
Iy= f E f (s, DQHQDdsd?
2D
= [¥ (s, Q)R] ’;j_f;',—- fr (¥ (s, HDQND] [Q (s)ds
3
I éj?[?ﬁ'(s, t)Q(s)] ;Q’(t)dt-l-fnjw'(s, 1) (s)Q'(t)dsd?
0 £ 0
w1n =g tog L )oofiog L iogl)
similarly )
(4. 13) 13--—-0(103 liq log 11_?, )

Collecting (4.10), (4.11), (4.12) and (4.13), we get
(1 1
V(x, y)—o(lot, I—¢ -log )

1—7

which proves the theorem A’.

5. Proof theorem D’. Again without the loss of generality we take C=0, so
that g(u, v)=¢(u,v)/16 sin u/2 sinv/2

we have

mn B, = ; ffnqb(s, t)- :ffs {é +cos ms} :fit {; -COS m‘}dsdt
0 0

Thus

m n

T _ '
=SS ,wB =1 d ysin(m+1/2)s | d sin(z+1/2)¢
2= MY By n2ff¢(s’t) ds { 2sin s/2 } d1 { 2si 1/2 }ds‘”
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nn
1 » . -
=2 f f &(s, 1) [r2m cos(m+ 1/2_)3 sin s/2+sin ms]
00 4 sin”"s/2

< [ 2n cos(n+1/2)t-sin £/2—sin nt ]dsdt
4Sin2t/2

T
=1 f g(s, t)dmn cos(m+1/2)s-cos(n+1/2)t dsdt

Tn

, 1 f sin ms sin #!

a2 { J8 & D 5ins/z-sin 72 &%
nr

2m cos (m—+1 ,2)s-sin nt
1 fg(s,l‘ . /

sin £/2 asdt

00
T _

1 ffg(S’ £ 2% cos(n—+1/2)t-sin ms dsdt
0

2 . sin s/2
1 :
=gz U Hly= =1 ]

For the proof of the theorem D, it is required to be shown that

P~ < m.m _ . 1 ) 1 ﬁ)
%% S, .q 7 /mn-—o(log =g log—="—

or equivalently,

S~ p M n 1 1
(5.1) — 2> I4q r/mn—o(logl_q logl_r)
Assume | 1—q=$, l—7r=7
y{ A
| _ sinms. sl nl
we have Iz-——bft[g(s,t) S — dsdt+o(l)

The treatment of this integral is equivalent to establishing the theorem proved
in the paper of Singh _[4] and accordingly |

(5.2) 2= 2= 1, qmr"/mn-—-o(log —g .-log 7 )

m=1n=1 -7

As for the integral I,, we have

o =,
22 22 Iqg 7 /mn
m=1n=1

"1.\‘

sz g(s, ) [A(q, s)—cos 5/2] [A(7,t)—cos ¢/2] dsd!
¢ 0 |
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=ffg(s, t)l(q, 8)2(?'- t)dsdt
00

-—ffg(s, t)A(q, s)cost/2dsdt
00

~ [ [2(s,)2Cr, )cos s/2 dsat
00 |

nn
+ffg(s, £)cos s/2 cos t/2 dsdt
00

(5.3) | =I1,1"I1,.2“I1,3+I1,4; msay

Here Az, D=1 _.__(A~-7)cos t/% )
1—27r cost+r

A(t) has the estimates

(5. 4) A(t) =0(—717-*) 1<<m
(5.5) 2(2)=a( 1}"—-)_—.0(-—2}—) £>1
(5.6) 2’(t)=-—§%—-=o(%)
Also from (3.2)
i°G
(5.7) st Fyey =g(s,t) almost every where.
Now clearly
(5.8) II'4=0(10g—§1.—-10g-;12—)=0(10g l_l_q--log l-l—r )

T

I, = fg(s, DAA(Ddsdt

] 7 #zn ¢

([ [+ ]+

00 €0 On

(8.9) =Ly Tty sy SAY

0
¢

{4 TR

+ f f ) gfgt .sz(syzz(z)ds‘éz
& 7

On integration by parts

| o _ n
I1.1,1= [GE DAOAM] —EAD [6(6, - A
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~7A(1) fG(s M-~ [s2()]ds+ f fccs, 23 [szcsn o A dsdt

(5. 10) —o<]0g g log 71? )“0(103“11 -log 1.{,’,>

I 1, = G5 DSEADAD ;. § - f (Gs, DIAD] - d [sA(s)] ds

. |
- f [G(s, t)sZCSDJ’; L [1A()]dt+ f fG(s, 1) js [sA($)] ;’; [tA(1)] dsdt
. g’-‘U

A dt
(5.11) =0(10g—%—-10g 71? )—o(log_ 1iq«l(}g lir)
Similarly
(5.12) I, 3"0(105 é_ -log ! )——o(log 1_1qﬂ-10g 11r>
and

I1,1,4= [G(s, DADADsH ;7 — [1G(s, DEAD) 2 [s2()] ds
¢ | |

T

- [ 1605, DA 5 [EAD dt+ [ [G s, 5) -2 [5A()] 2 AZ QLR
§ 7

9

(5.13) =o(log-;=—-log ,17 )—O(IOg liq log 7= )

combining (5.10), (6.11), (5.12) and (b.13), we get

_ 1 1 )
Il,l-—o<logl 7 log7—

Arguing similarly it can be seen that

_ 1 1
I1,0=11,53= (10g =, "log7= )

Thus
_ 1 1
(5. 14) ~ 1,=0(log L—log o

Again we consider the typical integral I,, the treatment of [ 5 will be similar.

Here

= |

f; z? 1,q"7" rmn=[ [g(s,8) (g, &)~ cos s/21T(r, Ddsdt

where
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_ 1 =1 7sint
7=T(rt)= 5 COSec t/2 tan =7 cos 7

The estimate of T are easily seen to be
T(r,H)=0(1/7) <7
T ‘_{0(1/7?2) I<7

at — \o(q/t) 7
The estimates concerning 7(7,f) being exactly similar to that of A(g,s) the

integral I2, can be disposed off as before.
Thus

(5. 15) ) I,=0(1)(L), I,=0(1)(L)
Collecting (5.1) (5.2) (5.14) (15.15), we prove the theorem D' .

We have considered only the case corresponding to the first allied series.
Analogous results can be established for the series corresponding to second and
third allied series by proceeding in a similar way.

[ am highly to grateful to Dr.B.D. Singh, Prof. of Mathematics Vikram
University Ujjain for the inspiration that I received from him during the prepa-
ratio1 of this paper.

Govt. Science College,
Gwalior.
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