
‘ 

Kyungpook Math. J. 
Volume 14. Number 1 
June. 1974 ι 

CLASSICAL RINGS OF QUOTIENTS OF GROUP-RINGS 

By Keng-Teh Tan 

1. Introduction. 

In this paper, our main purpose is to give a different approach to the following' 

theorem: 

If R is an order in an (left) artinian ring and G a poly-(cycIic or finite). 
group, then the group-ring RG is again an order in an artinian ring. 

This result was first proved by P. F. Smith [9]. A slightly more special case 

of this theorem in which R is semiprime left Goldie was obtained independently 
by the author in his doctoral dissertation submitted to Queen’ s University at 

Kingston, Canada [12]. However, in our approach given here, we first develop 
and study the concepts of group-rings with factor sets and prove a few results 
including the fundamental theorem of twisted group-rings. With this machinery 
and Small’ s characterization of noetherian rings which are orders in artinian rings ,_ 

we obtain an aIternativeproof of the theorem. Perhaps the machinery developed 
in this paper will be of some use in the study of group-rings of certain group 

extenslOns. 

The author wishes to express his sincere thanks to his supervisor Professor 1. 

Hug!1es for his guidance and encouragements during the preparation of the thesis. 

2. Preliminaries. 

All rings considered are associative and possess identities. Operations of groups. 
will be denoted multiplicatively. 1 will denote both ring identities as well as group 

identities. All terminologies are standard. However, some of the key terminologies ‘ 
are given below. 

A group G is called poly-(cycUc or finz'te) if it has a subnormal series such that 

each factor is either cyc1 ic or finite. G is called poly-(쩌finite cyclic) if it has a 
subnormal series in which every factor is infinite cyclic. 

A theorem of K. A. Hirsch ([3] , ~ 2.1) says that if G is poly-(cyclic or finite) , 
then G has a normal subgroup H of finite index in G such that H is poly- (infinite 
cyclic). 
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A ring 5 is a φartz'al left quotieγt γing of R if (1) R is a subring of 5 and (2) 

3 ε 5 implies s=r-1a for some r， aεR with r regular in R. 

Let R be a ring and M a multiplicatively closed subset of regular elements of 

R. Then R is said to satisfy the left Ore condz'tz'on with resþect to λ([ if for each 

mεM， r ε R , there exist m' E M , r' ε R such that m'r=r'm. In this case, we 

caIl M an Ore semz--group of R. If M is one such, then there exists a ring RM 

such that (1) RCRM’ 
(2) m ε M implies that m is a unit in RM' (3) x ε RM 

implies that x=m-1 a for some mεM， aεR. RM is unique up to isomorphism. If 

M happens to be the set of aIl regular elements of R , then RM is caIled the total 

left quotz'ent ring of R and it is usuaIly denoted by Q(R). It is weII known that 

R has a total left quotient ring if and only if the set of aII its regular elements 

forms an Ore semi-group of R ([4]). A ring R is caIIed an Ore ring if Q(R) 

exists, and in this case, R is said to be an Q1-der ηz Q(R). 

We now quote some results that wiII be used later. 

(2. 1) If 5 is a partial qμotient ring of a ring R , then 5=RM for some 01-e 

semi-group M of R. 

(2.2) If R is semi-prime and Q(R) exists, then Q(R) z's also semz'-prime. 

(2.3) If R z's (left) artz"nz'an, then Q(R) = R ([7], 2.3). 

(2.4) Goldie’s Theorem: R z's semiφ7쩌ze left Goldie zf and only zf Q(R) exists 

and is semi-simþle (trivial J acobson radical) artinian ([2] , pp. 166~ 169). 

Let M be an Ore semi-group of R and 5=RM• 

(2.5) The Common Denominator Theorem: For sl' "', s" ε 5 , there exist m ε M, 

71, ---, % ε Rsμch that Si=m-
1 깐 for all i=l , …, n ([4], p.6). 

(2.6) If Q(5) exists and is artinian, then Q(R) exists and in fact Q(R) =Q(5) 

( [8] , p. 16). 

(2.7) If R is (left) noetherian, then so is 5 ([8] , p.16). 

(2.8) Let R= R/fJ'" θR". Then Q(R) exists zf and only zf each Q(Ri) exists and 

in this case Q(R) =Q(R1)θ ... ffiQ(R ,,) ([8] , p.29). 

(2.9) If 5=Q(R) is artz'nian, then Q(RηXn)=5nXn' where RnXn denotes the 

.comPlete ring of nX 12 matrices over R ([8] , p.28). 
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(2.10) P. Hall’s Theorem: If R is noetheγian and G is poly-(cyclic or finite) , 

then RG is noetherian (cf. [1] , Theorem 1). 

(2. 11) L. Small’ s Theorem: Let R be noetherian, N its nilpotent radica!. Then 

the following statements are equivalent: 

(1) Q(R) exists and is aγtinian. 

(2) For each x ε R , x is regμlar in R if and only if x+ N is regμlar in R/N 

(3) For each cεR zνith c+N regμlar in R/ N , the1'e exist r ε R , n ε N such 

that cr+n is regμlar in R. ([9] , p.647). 

3. Group-ring with factor sets. 

In this section, we will give a general study of group-rings with factor sets. 

For the sake of convenience, they will simply be called twisted gγoμ~p-rings. 

DEFINITION 3. 1. Let R be a ring and G a group. A pair of mappings (λ， μ) is 

a factor set for G over R if λ maps GxG into the set of non-zero elements of R 

and μ maps G into the set of all ring-automorphisms of R such that for all g , h, k 

ε G， rE R, we have 

(a) (rg)"까í， g=Àh.grhg 

(b) Àg， hÀgh.k=Oh，k)gλg， hk 

(c) Àl,h =Àg, l=1 

where λg. h=À(g, h) and r
g 
=μ(g)(r). 

Now let 0 , μ) a factor set for a group G over a ring R. Let S be the set of all 

finite formal sums L::; 간강iwith 간 εR， gi ε G. We define addition in S in the obvious 

way. We next define multiplication in S as follows: for a, b ε R , g , h ε G, let 

(*) (a강) (bJi) =abgÀg, h화: 

For elements of S which have more than one term, the multiplication is defined 

by the rule (*) and the distributive laws. Then one verifies that S with addition 

and multiplication defined as above is a ring having the same identity as R. We 

will denote S by R(G;À, μ) to emphasize the role that 0 , μ) plays. We wiI1 
identify rER with 1'1 in S and denote 19 simply by 흥. 

The following easy facts are useful: 

(1) For r ε R, s ε S, define 1'S to be the product of r and s as elements of the 

1"ing S. Then S becomes a left R-module. 

(2) For g , hεG， gh=Àg,h gh in S. 
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(3) If both À and μ are trivial, that is, μ(g)(r)=r and Àg,h=1 for all g , h ε G'.. 

r E R , then S coincides with the ordinary group-ring RG_ 

We now prove an important theorem which we call the fundamental theorem of 

twisted group-rings. 

THEOREM 3. 2. Let R be a ring and N a normal sμbgroμþ of a group G. Then' 

RG즌RN(G/N; À, μ) 

for some factor set 0 , μ) for G/N 0νer RN. Moreover , λg， h=À(g， h) are μnzÏs in' 

RN foγ all g , h ε G. 

PROOF. For each x E G/N, fix an g" ε G such that x=Ngx' We pick gl =1_ 
m 

ω
 

π
 
씨
 G= U {Ngxlx E G/N} 

For x ,y ε G/N, let x=Ng", y=Ngy. Then 

xy= (N g ,,)(Ngy) =N(gxgy)' 

On the other hand, 
xy=NgXY' 

Thus, g"gy =m",ygXyfor some m"， yεN. m",y is uniquely determined, since the 

representatives {g" I x ε G/ N} are fixed. Define 

λ : G/NxG/N• RN 

as follows: for x, y ε G/N , let 

À(x,y)=mX , yENCRN. 

Next, define 

μ : G/N• Aut(RN) 

as follows: f or x ε G/N , 'L, rini ε RN, let 

μ(x)( 'L， rini) = ε r/g"nig ,,-l). 

Then one verifies that μ(x) is well defined, μ(x) is a ring automorphism of RN‘ 

and 0 , μ) is a factor set for G/N over RN. Let 

S=RN(G/N; À, μ). 

Define e: RG• S as follows: let r ε R , g ε G be given. Then there exist a unique 

x ε G/ N and a unique n ε N such that g=ngx' Thus we define 

e(rg) = (rn)x ε RN(G/N; À, μ). 

We extend e additively for general elements of RG. Then one verifies that e is. 
ring isomorphism of RG onto S. This proves the theorem. 

• 
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LEMMA 3.3. Let R be an Ore r z"ng and Q zïs total left quotz"ent r z"ng. Let (λ， μ〉

be a factor set for G oveγ R. Then there exists a factor set (λ， μ1) for G oveγ Q 

sμch that μ/g)(r) =μ(g)(r) for all g ε G， rE R. (λ， μ1) is μ%Z·qμely determined 

by (λ， μ). 

REMARK. (λ， μ1) is called an extension of (λ， μ) from R to Q. 

Proof of the Lemma. We first note that if such an extension exists, then it 
-1 is unique, since each q ε Q is of the form r -'s for some r, s E R. Next, let g ε G. 

q=r-1sεQ. Define 

μ1(g) : Q• Q 

by putting μ1(g)(q)= [μ(g)(r)]-1μ(g)(s). We first show that μ1 (g) is well­

defined. W rite ψ=μ(g) ， ψl=μ1(g). Let q=r-1s=μ-1V with μ， v ε Rand μ regular 

in R. Then s=7%-1u=p--1ku, where‘ 7μ-1=p -1k with p, k E R and p regu1ar in 

R. Thus we have ps=kv and pγ=ku. Then one verifies that ψ(r)-1φ(s)=ψ(U)-1 
-1 " -1 ψ(U)· Next, for q1=7 ls, q2=μ v in Q, write q1q2=(r-'s)(μ v)=p-"qv, 

where p-1q=r-1szf1. Thus 7-1s=p-1qzt· Then one easi1y verifies that φ1 (q1q2) = 

ψ1(q1)ψ1 (q2). 

Let ql' q2 be as above. Let m , nER with m regu1ar in R be such that mr=nu. 

Then by construction of Q (cf. [4] , p.7) , q1 +q2= (nu) -1(ms+nv). (nμ) -1makes 

sense in Q, since nμ=mr is regu1ar in R. It is then easy to show that φl is 

additive. 

Finally, one can verify that (λ， μ1) is a factor set for G over Q, using the 

following equalities: 

(rg)hAh, g = λh， grhg 

and 

[(r엄선 -1λh， g=λh， g(rhg)-l. 

This proves the 1emma. 

4. Twisted group-rings of finite groups. 

In this section, 0 , μ) will always denote a factor set for a group G over a 
” ring R. 
、

LEMMA 4. 1. If R is left artz'nian and G is fz"nzïe, then S=R(G; λ， μ) z's also 1κft 

artinian. 
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PROOF. Let n be the order of G. We note that as a left R-module, S is 

isomorphic to the direct sum of n copies of R. Hence S is a left artinian R­
module. But R is a subring of S, therefore S is in particular, a left S-module. 

In other words, S is a left artinian ring. 

PROPOSITION 4.2. Let R be a η~-ng and QCR) art쩌z"an. If G z.s ßn#e, then T = R 

(G; A., μ) Z"S an Ore r z"ng and QCT) z-s arUnz-an. 

PROOF. Let 0., μ1) be an extension of Cλ， μ) from R to QCR). Since QCR) is 

artinian, so is S=QCR) CG; A.， μ1) by Lemma 4.1. It foIIows that Q(S)=S, by 

(2.3). Next we show that S is a partial left quotient ring of T. This is straight­

foward by the common denominator theorem. Hence Q(T)=QCS)=S is artinian 

by (2.6). This proves the lemma. 

5. Group-rings of poly- (infinite cycIic) groups 

LEMMA 5. 1. Let R be a r z"ng wz"thout zero d z"vz"sors and G a poly- (z"nfz"nz"te cychc) 

gγozφ. Then RG has no zero d z"vz"sors. 

PROOF. In view of Theorem 3.2 and induction, it suffices to show that if G is 

infinite cycIic and (λ， μ) is a factor set for G over R , then RCG; λ， μ) has no 

zero divisors. However, the proof of this assertion is simiIar to the polynomial 

case and therefore omitted. 

LEMMA 5.2. Let D be a d z"vz"sz"on r찌g， G the z"nfz"nz"te cyclz"c groμ:p and 0., μ) a 

fαctor set for G ovel- D. Then D(G; A., μ) Z"S a left p서nciple z"deα1 donzain and 

therefoγe an Ore doma z"n. 

PROOF. Let S=D(G;λ， μ) and x a free generator for G. Let D [치 denote the 

ring of polynomials over D in the indeterminant x. Then we see that D [xJ C S 

and for each y ε S, y=x -J f(x) for some integer j and some f(x) ε D [xJ. 

Let A be a non-zero left ideal of S. We can pick a non-zero element a(x) ε A 

n D(x) with minimal degree. 、 We cIaim that A=Sa(x) , the left ideal of S 

generated by a(x). ClearIy, Sa(치 C A. Let y ε A , y~O. Write y=x -} fCx) 

some integer j and some 1(X) ε D [xJ. Then one sees that f(치 ε A. Ncxt, 

the left division algorithm, there exist q(x) , r(x) ε D [xJ such that 

f(x) =q(x)a(x) +r(x) 

for 

bv 

with r(x) =0 or deg(r(x)) <deg(a(x)). Thus rC치 드 A n D [xJ , it follows that 

r(x)=O by the minimality of degCa(x)). This shows that f(치 ε Sa(x). Conse-

quently y=x -J f(x) ε Sa(x). Hence A C Sa(치. This proves that A=Sa(x). 
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The second assertion follows from the fact that S is a left noetherian domain, 
so it is semi-prime left Goldie, thus S is an Ore domain. This completes the 

proof of the Lemma. 

PROPOSITION 5.3. Let R be an Ore domaz"n and G a Poly- (z"njz'n z"te cyclz"c) grouψ. 

Then RG Z"S again an Ore domaz.n. 

PROOF. 'vVe first prove that if G is infinite cyclic and (il., μ) is a factor set for 

G over R , then S=R(G; il.， μ) is an Ore domain. We note that S has no zero 

divisors by Lemma 5. 1. Let D=Q(R) be the total left quotient ring of R. Then 

D is a division ring. Let (il., μ1) be an extension of (λ， μ) from R to D. Then 

D(G; λ， μ1) is an Ore domain by Lemma 5.2. Let a, b be non-zero elements of R 

(G;λ， μ). Then there exist x', y' ε D(G; λ， μ1) such that x'a=y'b=/=O. 'vVrite x ,=c-
1 

x, y ’ =d-ly for somec, deER, x， yε R(G; λ， μ). This is possible by the common 
-1 7-1 7 _ ., -1 ,'1:T7. ., -1 -1 denominator theorem. Then c-'x a=d-'ybordc-'xa=yb. Write dc- J. =m- J. n , 

with m , n E R , m=/=O, then we have, m-1ηxa=yb， or (nx)a= (my)b =/=0, where nx, 

ηzy E R(G; il.， μ). This proves that R(G; λ， μ) is an Ore domain. 

To finish the proof, use Theorem 3.2 and induction. 

PROPOSITION 5.4. Let R be semi-prime left Goldie and G poly- (z"nfz.nüe cyclz"c). 

then RG Z"S agaz"n semz"-prime 1ζft Goldie. 

PROOF. Let S=Q(R) be the total left quotient ring of R. Then S is semi-simple 

artinian by Goldie’s theorem. By the common denominator theorem, one easily 

verifies that SG is a partial left quotient ring of RG. We want to show that Q 

(SG) is semi-simple artinian. Let 

S 르 Dt×”{9---QdmXm’ 

where D, ... , Ll are division rings and DηXn' ... , Llmxmare complete rings of nXκ 

.. , mXm matrÎces over D, … ,Ll respectively. Thus, 

SG 르 DπXnGEÐ ... θLlmXmG 

즈 (DG)nXnEÐ…밍(LlG)mXm. 

All the isomorphisms can be easily established. Now the proposition follows by 

(2.4) , (2.6) , (2.8) , (2.9) and (5.3). 

COROLLARY 5.5. 1f Q(R) z.s semz.녕z"mple artz"n z"an and G is po!y-(cyclz"c or jz'nüe)~ 

then Q(RG) exz"sts and Z"S artz"n z"an. 
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PROOF. The coroIlary follows by Theorem 3.2, Lemma 4. 1 and Proposition 5.3. 

We remark that in the above situation, Q(RG) need not be semi-simple. To 

see this, let R to be a field of characteristic dividing a finite group G. Then Q 

(RG)=RG and RG is not semi-simple. 

6. Proof of the theorern 

So far we have applied a different approach to the proof of a slightly more 
special case of the theorem. However, to finish the proof, we will make use of 

a technique due to P. F. Smith [9). 

LEMMA 6. 1. Let R be artz"nz"an and N z"ts nz"lpotent γadz"cal. Let G be poly- (z"nlz"nz"te 

cycl z"c) , theπ NG Z"S the nz"lpotent radz"cal 01 RG. 

PROOF. NG is c1early a nilpotent ideal of RG, so it is contained in the nilpotent 

radical of RG. On the other hand, since 
RG/NG 르 (R/N)G 

and (R/ N)G is semi-prime, we have the other inc1usion. 

LEMMA 6.2. Let A be an Ore r z"ng and G a group. Let M denote the set 01 all 

regular elements 01 A. Then M z"s an Ore semi-group 01 AG. 

PROOF. Clearly every m ε M is a regular element of AG. Let m 르 M , x= "L, aig ,. 

E AG be given. Then for each i , there exist mi E M , bi E A such that m,.ai= 

bzm. Thus, az=??Zz-1bz??z, where ??Zt-1 ε Q(A). For each t, write ??z, -l=%Zu-1%, 

with mo E M , ni ε A, ??to-I eE Q(A). Then 

z azg2=mo-1(Z그 %1bimgz) 

=mo-\~그 ,zzbzgz)??Z· 

Hence mox=x’m, wherex'= ε 낀bigiεAG. This proves the lemma. 

Let K be a normal subgroup of a group H such that H / K is infinite cyc1ic. 
Let H/K begenerated by Kg for some g ε H. Let A be a ring (with identity) 

andy ε AH， theny=ε aig" for suitable integers i and a，. ε AK. 

LEMMA 6.3. (P. F. Smith [9]). Let A be semi-prime noetheran, K , H as aboνe 

and x a regular element 01 AH. Then there exz"sts r E AH sμch that 

X7=ao+alg+--- +algl 

where a, E AK for all i and a, is regular in AK. 
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LEMMA 6.4. Let A be artz"nian and H poly- (infz'꺼te cyclz"c) , then Q(AH) exists and 

;'is artz"nian. 

PROOF. Let N be the n iIpotent radical of A and H=Hl그H2그…그Hn그Hη+l= 
{1} be a subnormal series of H such that each factor group H/Hi+ l is infinite 

‘cyclic. By induction on n, we may assume that Q(AH2) exists and is artinian. 

Let K=Hz. We want to show that Q(AH) exists and is artinian. We first note 

that AH is noetherian by (2.10). Also, Q(A)=A by (2.3). Let H/K=<Kg) as 

before. 

By (2.11) , it suffices to show that for each a ε AH such that a+NH is regular 

in AH / N II, there exist r ε AH, n ε N H such that ar+n is regular in AH. 

Let f: AH/NH• (A/N)H be the natural isomorphism defined by 

f((ε azht) +NH) = ε (ai+N)까， 

τ'1here ai ε A , hi ε H for all i. 

Let 

Define 

a=2그 aihi, ai E A , hi E H. 

a' = f(a+ N H) =:E (ai+ N)hi ε (A/N)H. 

Then a' is regular in (A/N)H. Since A/N is semi-prime noetherian, by Lemma 

6.3, there exists r'ε(A/N)H such that 

a// = co/ + C1/g + ---+ ck/gk, 

where c/ ε (A/N)K and ck ' is regular in (A/N)K. 

Write 

/ 

낀=F(al(j)+N)kl(1)， j=1, ... , k 

‘ 
7’=유 (δI+N)gl' ò1 ε A , gl ε H. 

Define 

( _ (j) 1_ (j)\ 
딩=F~까 lzl\J/) E AK C AH, 

7=F δIgl ε AH. 

Then one verifies that 

a'r'=f(ar+NH) 

=f(cO+c1g十 --- +Ckgk+NH). 

'Thus 

ar+%=co+Clg+--- +Ckgk 

• 
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for some nE NH. Since Ck’ is regular in (A/N)K and!(ck +NH)=cμ， one infers 

that ck+NH is regular in AH/NH. Thus ck+NK is regular in AK/NK. (Here 

we imbed AK/NK into AH/NH by the monomorphism that sends z+NK to z+ 

NH for z ε AK. However, as Q(AK) exists and is artinian by assumption, it 

follows by L. Small’ s theorem (2.11) that ck is regular in AK. It is then obvious‘ 

that cO+c1g+ ... +ckl is regular in AH, as can be easily verified like the 

polynomial case. This completes the proof of the lemma. 

We remark that the technique of the above proof is due to P. F. Smith [9]. 

Finally we can now prove the following 

THEOREM. I! R is an order in an artz"χian ring and G is a po!y-(cyclz'c 0γ !inite)~ 

then RG is an order in an artinian ring. 

PROOF_ Let H be a normal subgroup of G of finite index in G such that H is 

poly-(infinite cyclic). Let A=Q(R). Then A is artinian. Denote by M the set of 

all regular elements of R. Then M is an Ore semi-group in RH by Lemma 6.2. 

Thus (RH)M exists. We now show that (RH)M=AH. We note that Q(AH) 

exists and is artinian by Lemma 6.4. Since RH C AH, m-
1 ε A for all m ε M , 

we infer that (RH)M ζ AH. On the other hand, let y= L:::; a샤z ε AH . . Write ai = 

m -1bi for all i , with m ε M , bi ε R. Then y=1η-1( L:::; bA) ， it folIows that y ε 
(RH) M' This shows that AH = (RH) M 

Since Q(AH) exists and is artinian and AH = (RH) M' one concludes that Q­

(RH) 二Q(AH) and so is artinian. 

To finish the proof, use Proposition 4.2 and the fact 

RG 르 RH(G/H; λ， μ) 

for some factor set 0 , μ) for G/ H over RH. 

We remark that with section 5 omitted, we have an alternative proof of the 

theorem. However, section 5 is included here due to the reason that the proof of 

the special case given there indicates how the classical structure theorems come 

to play a role and thus it might possess some interest in its own right. 
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