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1. Introduction.

In this paper, our main purpose is to give a different approach to the following-
theorem:

If R is an order in an (left) artinian ring and G a poly-(cyclic or finite):
group, then the group-ring RG is again an order in an artinian ring.

This result was first proved by P.F. Smith [9]. A slightly more special case
of this theorem in which R is semiprime left Goldie was obtained independently
by the author in his doctoral dissertation submitted to Queen’s University at
Kingston, Canada [12]. However, In our approach given here, we first develop-
and study the concepts of group-rings with factor sets and prove a few results
including the fundamental theorem of twisted group-rings. With this machinery
and Small’s characterization of noetherian rings which are orders in artinian rings,.
we obtain an alternative .proof of the theorem. Perhaps the machinery developed
in this paper will be of some use in the study of group-rings of certain group

extensions.

The author wishes to express his sincere thanks to his supervisor Professor I
Hughes for his guidance and encouragements during the preparation of the thesis..

2. Preliminaries.

All rings considered are associative and possess identities. Operations of groups.
will be denoted multiplicatively. I will denote both ring identities as well as group
identities. All terminologies are standard. However, some of the key terminologies.
are given below.

A group G is called poly-(cyclic or finite) if it has a subnormal series such that.
each factor is either cyclic or finite. G is called poly-(infinite cyclic) if it has a
subnormal series in which every factor is infinite cyclic.

A theorem of K.A. Hirsch ([3], §2.1) says that if G is poly-(cyclic or finite),
then G has a normal subgroup H of finite index in G such that H is poly-(infinite-

cyclic).
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A ring S is a partial left quotient ving of Rif (1) R is a subring of S and (2)
& S implies s=7"'a for some 7, a=R with » regular in R.

Let R be a ring and M a multiplicatively closed subset of regular elements of
K. Then R 1s said to satisfy the left Ore condition with respect to M if for each

meEM, & R, there exist w & M, ' € R such that m'»=7'm. In this case, we
call M an Ore semi-group of R. If M is one such, then there exists a ring R,,

such that (1) RCR,,, (2) m& M implies that m is a unit in R,, (8 x < Ry,

implies that r=m"" @ for some mEM , aER. R,, 1s unique up to isomorphism. If
M happens to be the set of all regular elements of R, then R,,is called the fotal

left quotient ring of R and it is usually denoted by Q(R). It is well known that
R has a total left quotient ring if and only if the set of all its regular elements
forms an Ore semi-group of R ([4]). A ring R 1s called an Ore ring if Q(R)
-exists, and in this case, R is said to be an order in Q(R).

We now quote some results that will be used later.

(2.1) If S is a partial quotient ving of a ring R, then S=R,, for some Ore
semi-group M of R.

(2.2) If R is semzi-prime and Q(R) exists, then Q(R) is also semi-prime.
(2.3) If R is (left) artinian, then Q(R)=R ([7], 2 3).

(2.4) Goldie’s Theorem: R is semi-prime left Goldie if and only if Q(R) exists
and is semi-stmple (trivial [Jacobson radical) artinian ([2], pp.166~169).

Let M be an Ore semi-group of R and S=£&;,.

(2.5) The Common Denominator Theorem: For s+, s &S, there exist m& M,
7y, .7, € R such that sfzm_l . for all i=1,+-, n ([4], p.6).

(2.6) Iy Q(S) exists and is artinian, then Q(R) exists and in faci Q(R)=Q(S)
([8], p.16).
(2.7) If R is (left) noetherian, them so is S ([8), p.16).

(2.8) Let R=R,®- DR . Then Q(R) exisls if and only if each Q(R,) exists and
in this case Q(R)=Q(R)D--CQ(R,) ([8], p.29).

(2.9) If S=Q(R) is artinian, then Q(Ran)':San’ where Rn)(ﬂ denotes the
complete ring of nXn matrices over R (8], p.28).
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(2.10) P. Hall’s Theorem: If R is noetherian and G is poly-(cyclic or finite),
then RG is noetherian (cf. {1], Theorem 1).

(2.11) L. Small's Theorem: Let R be noetherian, N its nilpotent radical. Then

the following statements are equivalent:
(1) Q(R) exists and is artinian.
(2) For each x E R, x is regular in R if and only if x+N is regular in R/N

(3) For each ¢€R with c+N regular in R/N, there exist yr ER, nE N such
that cr+n is regular in R. ([9], p.647).

3. Group-ring with faector sets.

In this section, we will give a general study of group-rings with factor sets.
For the sake of convenience, they will simply be called fwisted group-rings.

DEFINITION 3.1. Let R be a ring and G a group. A pair of mappings (4, p) is
a factor set for G over R if A maps GXG into the set of non-zero elements of R
and ¢ maps G into the set of all ring-automorphisms of R such that for all g, %, %

G, 7y& R, we have

(a) (rg)h/?k’gz/'tk,grhg

(b) R‘g, k/.lgk, P (Zh. 2 glg. hk
(c) Zl’kzlg_lzl
‘where Zg’kzl(g, n) and 7°=u(g) ().

Now let (4, ¢) a factor set for a group G over a ring B. Let S be the set of all
finite formal sums 27 g,with », ER, g, € G. We define addition in S in the obvious

way. We next define multiplication in S as follows: forae, b E R, g, h € G, let

(*) - (ag)(Oh)=ab° A, ,gh.
For elements of S which have more than one term, the multiplication is defined
by the rule (*) and the distributive laws, Then one verifies that S with addition
and multiplication defined as above is a ring having the same identity as R. We
will denote S by R(G;A, 1) to emphasize the role that (4,x) plays. We will
identify &R with 7/ in S and denote /g simply by &.

The following easy facts are useful:

(1) For € R, s& S, define s to be the product of # and s as elements of the
ring S. Then S becomes a left £-module.
(2) For g,hEG, gh=2, , gh in S.
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(3) If both A and p are trivial, that is, u(g)(»)=7 and Zg’h=1 forall g, h&E G.
y € R, then S coincides with the ordinary group-ring RG.

We now prove an important theorem which we call the fundamental theorem of:
twisted group-rings.

THEOREM 3.2. Let R be a ring and N a normal subgroup of a group G. Then-
RG=RN(G/N: A, 1)

for some factor set (A, u) for G/N over RN. Moreover, Zg’hzl(g, h) are units in:
RN for all g,heE .

PROOF. For each x & G/N, fix an g_.E G such that x=Ng,. We pick g,=1..

Then
G=U{Ng, |z & G/N}

For x,y&E G/N, let x=Ng, y=Ng. 'Then

xy=(Ng)(Ng)=N(g.g,).

On the other hand,
xy=Ng,..

Thus, g.8,=m,, & for some m, &N. m, , is uniquely determined, since the

representatives {g |x € G/N} are fixed. Define
A:G/NXG/N—RN
as follows: for x,y&E G/N, let
Az, y)=m, ©NCRN.
Next, define
u . G/N—Aut(RN)
as follows: for x& G/N, 22rn, € RN, let

pD(Srm)=r g n8, )
Then one verifies that pu(x) is well defined, u(x) 1s a ring automorphism of RN
and (4, ) is a factor set for G/N over RN. Let
S=RN(G/N; A, ).
Define 6 : RG—S as follows: let » € R, g € G be given. Then there exist a unique:
x & G/N and a unique & N such that g=#ng . Thus we define

O(rg)=(rn)T € RN(G/N; A, p).
We extend 8 additively for general elements of RG. Then one verifies that 0 1s:
ring isomorphism of RG onto S. This proves the theorem.
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LEMMA 3.3. Let R be an Ore ring and Q its total left quotient ring. Let (A, 1)
be a factor set for G over R. Then there exists a factor set (A, ul) for G over Q

such that p,(g)(r)=u(g)(7) for all gE G, r E R. (Z,ﬂl) (s uniquely determined
by (A, ).

REMARK. (4, g,) is called an extension of (4,x) from R to Q.

Proof of the Lemma. We first note that if such an extension exists, then it
is unique, since each ¢ & Q1is of the form 9'_13 for some r,s & R. Next, let g € G,
q-——r"lsEQ. Define

1 (g) : Q-Q

hy putting u¢,(g)(g)= [n(g)(7)] “L(@)(s). We first show that n(g) is well-

1

defined. Write o=p(g), ¢;=p,(g). Let qzr—'ls:u_ v with #,v € R and « regular

in K. Then s=m_lv-——jf‘lkv, where m—1=1‘f1k with p, & R and p regular in
R. Thus we have ps=kv and pr=Fku. Then one verifies that qo(r)_lqo(s)-—-tp(u)“l

o(v). Next, for qlzr"ls, qzzu"lv in Q, write qlqz-:(r“ls)(u_lv)zp—lqv,

—1

where p_1q=r_1su"1. Thus »r “s= p—lqu. Then one easily verifies that ¢, (g,9,) =

0,(q090,(g5)

Let g,,q9, be as above. Let m, #&ER with m regular in R be such that mr=nu.

Then by construction of Q (cf. [4], p.7), q1+q2=(7m)_1(ms—l-nv). (nu)_lmakes
sense in Q, since mu=mr 1s regular in K. It is then easy to show that @, 1S
additive.

Finally, one can verify that (4,p,) is a factor set for G over Q, using the
following equalities:

g~\F _ hg

and
g~hy —1 . hg —1
[(7°)7] A, =4, ()T
This proves the lemma.

4, Twisted group-rings of finite groups.

In this section, (4, ) will always denote a factor set for a group G over a
ring X. F

T,

LEMMA 4.1. If R is left artinian and G is finite, then S=R(G;A,u) is also left

ariiiian.
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PROOF. Let # be the order of G. We note that as a left R-module, S is

isomorphic to the direct sum of # copies of R. Hence S is a left artinian R-
module. But R is a subring of S, therefore S is in particular, a left S-module.

In other words, S is a left artinian ring.

PROPOSITION 4.2. Let R be a ring and Q(R) artinian.If G is finite, then T=R
(G:A,u) is an Ore ring and Q(T) is artinian.

PROOF. Let (4, 1) be an extension of (A, 1) from R to Q(R). Since Q(R) is
artinian, so is S=Q(R)(G: A, ) by Lemma 4,1. It follows that Q(S)=S, by
(2.3). Next we show that S is a partial left quotient ring of 7'. This is straight-
foward by the common denominator theorem. Hence Q(7T)=Q(S)=S 1is artinian
by (2.6). This proves the lemma.

5. Group-rings of poly-(infinite cyelic) groups

LEMMA 5.1. Let R be a ring without zero divisors and G a poly-Ginfinite cyclic)
group. Then RG has no zero divisors.

PROOF. In view of Theorem 3.2 and induction, it suffices to show that if G is
infinite cyclic and (4, 1) is a factor set for G over R, then R(G;A, 1) has no
zero divisors. However, the proof of this assertion 1s similar to the polynomial

case and therefore omitted.

LEMMA 5.2. Let D be a division ving, G the infinite cyclic group and (A, 1) a
factor set for G over D. Then D(G;A, 1) is a left principle ideal domain and

therefore an QOre domarn.

PROOF. Let S=D(G;A, 1) and x a free generator for G. Let D[%] denote the
ring of polynomials over D in the indeterminant ¥. Then we see that D[x] CS

and for each y& S, y-——x“‘i f(%) for some integer 7 and some f(%) &€ D|[x].
Let A be a non-zero left ideal of S. We can pick a non-zero element (%) &€ A
N D(Z) with minimal degree.k We claim that A=Sa(%), the left ideal of S

generated by a(x). Clearly, Sa(x) CA. Let y&E 4, y#0. Write y-—-—:q:_j F(%) for

some integer 7 and some (%) & D[x]. Then one sees that f(x) & A. Next, Dby

the left division algorit_hm, there exist ¢(x), »(3¥) &€ D[x] such that
[(Z)=q(X)a(Z)+7r(Z)

with »(x)=0 or deg(r(x))<deg(a(z)). Thus »(x) & A D[], it follows that

y(Z)=0 by the minimality of deg(e(x)). This shows that f(x) & Sa(x). Conse-

quently yzx_j (%) € Sa(x). Hence A C Sa(x). This proves that A=Sa(x).



Classical Rings of Quotients of Group-Rings 125

The second assertion follows from the fact that S is a left noetherian domain,
so 1t is semi-prime left Goldie, thus S is an Ore domain. This completes the
proof of the Lemma.

PROPOSITION 5.3. Let R be an Ore domain and G a poly-(infinite cyclic) group.
Thern RG is again an Ore domain.

PROOF. We first prove that if G is infinite cyclic and (4, 1) is a factor set for
G over R, then S=R(G;A, 1) is an Ore domain. We note that S has no zero
divisors by Lemma 5.1. Let D=Q(R) be the total left quotient ring of B. Then
D is a division ring. Let (4, #,) be an extension of (4,x) from R to D. Then

D(G; A, ) is an Ore domain by Lemma 5.2. Let ¢,6 be non-zero elements of R
(G; 4, ). Then there exist 2,y € D(G; 4, ;) such that x’'a=y"57%40. Write o =%

x, y=d _ly for some ¢, d E R, x,yE R(G; A, p). This is possible by the common

1y a=d_lyb or dculxa':yb. Write dc_1=m_1n,

denominator theorem. Then ¢
with m, n € R, m+#0, then we have, mHlnm-—-yb, or (nx)a=(my)b#0, where nx,

my S R(G: A, ). This proves that R(G;A, 1) is an Ore domain.
To finish the proof, use Theorem 3.2 and induction.

PROPOSITION 5.4. Let R be semi-prime left Goldie and G poly-(infinite cyclic),
then RG is again semi-prime left Goldie.

PROOF. Let S=Q(R) be the total left quotient ring of B. Then S is semi-simple
artinian by Goldie’s theorem. By the common denominator theorem, 6ne easily
verifies that SG is a partial left quotient ring of RG. We want to show that Q
(SG) is semi-simple artinian. Let

S = Dn)(:'z@m@dm)-(m’

where D, -, 4 are division rings and Dﬂxﬂ,---,Ameare complete rings of #Xn,

.-, mXm matrices over D, -, 4 respectively. Thus,

SG = annG@'”@A G

mXm

= (DG)H)(H@O(AG)me‘

All the isomorphisms can be easily established. Now the proposition follows by
(2.4), (2.6), (2.8), (2.9) and (5. 3).

COROLLARY 5.5. If Q(R) s semz-simple artinian and G is poly-(cyclic or finite),
then Q(RG) exists and is artinian.
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PROOF. The corollary follows by Theorem 3.2, Lemma 4.1 and Proposition 5. 3.

We remark that in the above situation, Q(RG) need not be semi-simple. To
see this, let R to be a field of characteristic dividing a finite group G. Then Q

(RG)=RG and RG is not semi-simple.
6. Proof of the theorem

S>o far we have applied a different approach to the proof of a slightly more
special case of the theorem. However, to finish the proof, we will make use of

a technique due to P.F. Smith[9].

LEMMA 6.1. Let R be artinian and N its nilpotent radical. Let G be poly-(infinite
cyclic), then NG is the nilpotent radical of RG.

PROOF. NG is clearly a nilpotent ideal of RG, so it 1s contained in the nilpotent

radical of RG. On the other hand, since
RG/NG = (R/N)G

and (R/N)G is semi-prime, we have the other inclusion.

LEMMA 6.2. Let A be an Ore ring and G a group. Let M denote the set of all
regular elements of A. Then M is an Ore semi-group of AG.

PROOF. Clearly every m & M is a regular element of AG. Let m&E M, x= >-a,8,

€ AG be given. Then for each 7, there exist m, & M, b= A such that .=
b.m. Thus, aizmi_lbim, where mi_IEQ(A). For each 7, write ??ZE-HIZ?’?Z;-1_1%?

with mye M, n, € A, mo_l &€ Q(A). Then
> az-gz:mo_l(Z nbmg,)

Hence mypx=x"m, where x’=2"nb.g,EAG. This proves the lemma.

Let K be a normal subgroup of a group H such that H/K is infinite cyclic.
Let H/K be generated by Kg for some g& H. Let A be a ring (with identity)
andy € AH, then y=2>a,g* for suitable integers 7 and a, € AK.

LEMMA 6.3, (P.F. Smith [9]). Let A be semi-drime noether an, K, H as above
and x a regular element of AH. Then there exists r & AH such that

xr:ao—l-alg-l—----l-a[gf

where ¢, & AK for all 7 and ¢, is regular in AK.
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LEMMA 6.4, Let A be artinian and H poly-(infinite cyclic), then Q(AH) exists and

28 artinian.
PROOF. Let N be the nilpotent radical of 4 and H=H,DH,D--DH DH, =

{1} be a subnormal series of A/ such that each factor group H,/H, ; is infinite
cyclic. By induction on », we may assume that Q(AH,) exists and is artinian.
Let K=H,. We want to show that Q(AH) exists and is artinian. We first note

that AH is noetherian by (2.10). Also, Q(4A)=A by (2.3). Let H/K=<{Kg) as

before.
By (2.11), it suffices to show that for each ¢ € AH such that ¢+NH 1s regular
in AH/NII, there exist r € AH, n& NH such that ar+# is regular in AH.

Let f: AH/NH—(A/N)H be the natural isomorphism defined by
F((Zah)+NH)=23(a,+N)k,
where a,E 4, h, & H for all 7. |
Let a=2.ah, a;€ A, h, < H.

Define @' =fla+NH)=3Z(a;+N)h, € (A/N)H.

Then &’ is regular in (A/N)H. Since A/N is semi-prime noetherian, by Lemma
6.3, there exists »’'&(A/N)H such that

a'r'=cy —!—c{g—l— —I—ck’gk.
where cj’ € (A/N)K and ¢, is regular in (A/N)K.

Write
1, e B

*

|

r

r’'=0,+N)g, §,E4, g EH.

Define
— S (), () = AK I

r=.<? 0,8,€ AH.

Then one verifies that
a'r' =flar+NH)
-“—‘f(co—!—clgﬂ—---—l—ckgk-l—NH).

“Thus

k
artr=Ccyt+c, g+ 1+, 8




128 Keng-Teh Tarn

for some & NH. Since ¢c,” 1s regular in (A/N)K and f(ck-l—NH)———c;,’, one infers
that ¢,+NH is regular in AH/NH. Thus ¢,+NK 1is regular in AK/NK. (Here

we imbed AK/NK into AH/NH by the monomorphism that sends z-+NK to z+
NH for z€ AK. However, as Q(AK) exists and is artinian by assumption, it
follows by L. Small’s theorem (2. 11) that ¢, is regular in AK. It is then obvious

that co+clg+---—l—ckgk is regular in AH, as can be easily verified like the
polynomial case. This completes the proof of the lemma.

We remark that the technique of the above proof is due to P.F. Smith [9].
Finally we can now prove the following

THEOREM. If R is an order in an artinian ring and G is a poly-(cyclic or finite),
then RG is an order in an artinian ring.

PROOF. Let H be a normal subgroup of G of finite index in G such that H 1s
poly-(infinite cyclic). Let A=Q(R). Then A is artinian. Denote by M the set of

all regular elements of B. Then M is an Ore semi-group in RA by Lemma 6. 2.
Thus (RH) ), exists. We now show that (RH),,=AH. We note that Q(AH)

exists and is artinian by Lemma 6.4. Since RH C AH, m TS AforallmeE M :
we infer that (RH), C AH. On the other hand, let y=2ak € AH. Write a;=

m_lbz- for all 7, with me M, b, & R. 'Then y:m_l(Z bk, it follows that y &
(RH),,. This shows that AH=(RH),,
Since Q(AH) exists and is artinian and AH=(KRH),;, one concludes that Q

(RH)=Q(AH) and so is artinian.
To finish the proof, use Proposition 4.2 and the fact
RG = RH(G/H; A, 1)
for some factor set (4, ) for G/H over RH.

We remark that with section 5 omitted, we have an alternative proof of the
theorem. However, section 5 is included here due to the reason that the proof of
the special case given there indicates how the classical structure theorems come
to play a role and thus it might possess some interest in its own right. #

University of Malaya,
Kuala Lumpur,

Malaysia.
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