Note On The Double Centralizer Of a Module

by

Eung Tai Kim

Seoul National University, Seoul, Korea.

1. Introduction.

Let R be a ring and M a left R-module. Let $K=Hom_R$ (M, M). We call K the *centralizer* of R-module M. Clearly M is a right K-module and hence M is a R,K-bimodule.

The centralizer of the right K-module M is called the *double centralizer* of M and is denoted by $R^{\circ}(M)$ (or just R° when there is no risk of confusion). We can easily prove that there exists an embedding of R into the $R^{\circ}(M)$ when M is faithful over R. In general, R is not isomorphic onto $R^{\circ}(M)$ even if M is faithful module.

Bourbaki [2] proved that R is dense in R°(M) with respect to finite topology on R°(M), if R is a ring with identity and M is a unital, completely reducible and faithful left R-module.

The purpose of this note is to establish the following results:

If R is a ring with identity and M is a unital, completely reducible and faithful R-module, then

- 1. Every R-submodule of M is also K-module iff every two distinct irreducible direct summands in a decomposition of M as the direct sum of irreducible submodules are not isomorphic.
 - 2. If M is artinian over K, R is isomorphic onto the double centralizer R° (M).

2. Preliminaries.

PROPOSITION 1. If M is a faithful R-module, then R is isomorphic onto a subring of $R^{\circ}(M)$.

Proof. For an arbitrary $a \in \mathbb{R}$, the mapping $A : M \to M$ defined by Am = am is a $K(=Hom_R(M, M))$ -module homomorphism, i.e. $A \in \mathbb{R}^{\circ}(M)$.

Let $\varphi: \mathbb{R} \to \mathbb{R}^{\circ}(M)$ be a mapping defined by $\varphi(a) = A$. Then φ is a ring-homororphism. If $\varphi(a) = \varphi(b)$ am = bm for all $m \in M$, that is $a - b \in (0:M)$.

But (0:M)=0, since M is faithful R-module. Hence a=b. Therefore φ is injective, hence φ is an embedding.

PROPOSITION 2. Let R-submodule U of M be a direct summand of M. Then

- 1. U is an R°-submodule of M and
- 2. If T is an R-submodule of M, every R-homomorphism of U into T is also an R°-homomorphism of U into T.

Proof. 1. Let $M=U\oplus U'$ and let $\pi \in K=\operatorname{Hom}_R(M,M)$ be the homomorphism defined by $\pi: m=u+u' \mid \to u$ for U, $u'\in U'$, i.e. π is the projection of the R-module M onto the R-submodule U. Let $a\in R^\circ=\operatorname{Hom}_R(M,M)$. Then $aU=a(M\pi)=(aM)\pi\subseteq U$.

2. Let $\varphi \in Hom_R$ (M, M) and form $\pi \varphi$. Clearly

 $\pi \varphi \in \operatorname{Hom}_R(U, T) \subseteq \operatorname{Hom}_R(M, M)$

Hence for an arbitrary $a \in \mathbb{R}^{\circ}$ and each $u = m\pi$ in U,

$$a(u\phi) = a(m\pi\varphi) = (am)\pi\varphi = (am\pi)\varphi = (au)\varphi$$
.

If the R-module M is a direct sum of submodules each isomorphic to a module U, then using Proposition 2, we may show that R°(M) depends only on U and not on the number of summands occurring in the decomposition of M. The following are familiar propositions. We omit the proof of these propositions. [1]

PROPOSITION 3. Let M be an R-module. The following are equivalent:

- 1. $M = \sum_{i \in I} M_i$, M_i minimal for all $i \in I$.

 (Minimal module is a module which has no submodule other than 0 and itself.)
- 2. $M = \sum_{i \in I} \bigoplus M_{\lambda}$, M_{λ} minimal for all $\lambda \subseteq \Lambda$.
- 3. Every R-submodule U of M is a direct summand.

PROPOSITION 4. Let $M = \sum_{i \in I} M_i$, M_i minimal R-modules and let U be a submodule of M. Then there exists $\Lambda \subseteq I$ such that $M = U \oplus \sum_{\lambda \in A} \oplus M_{\lambda}$.

We say an R-module is *completely reducible* if any one of the equivalent condition of Proposition 3 holds, and we say an R-module M is *irreducible* if RM \pm 0 and M is minimal.

Let R be a ring with identity. Then every minimal unitary R-module is irreducible. We say an R-module U is homogeneous of type I if U is the direct sum of a family $\{M_{\lambda} | \lambda \in \Lambda\}$ of irreducible R-modules M_{λ} each isomorphic onto the irreducible module I.

Let $M = \sum_{\lambda \in \Lambda} \bigoplus M_{\lambda}$ be a decomposition of M as the sum of irreducible submodules. Partition the set $\{M_{\lambda} | \lambda \in \Lambda\}$ into classes $L\rho$, $\rho \in P$ of mutually isomorphic submodules. Let $H\rho = \sum_{\substack{M_{\lambda} \in L_{\rho}}} M_{\lambda}$. Then clearly

$$M = \sum_{\rho \in P} H_{\rho}$$
.

The HP are called the homogeneous components of M.

PROPOSITION 5. Let R be a ring with identity. Let U be an irreducible R-submodule of the R-module

 $M = \sum \bigoplus M_i$, M_i irreducible.

Then $U\subseteq M_{i_1}+\cdots\cdots+M_{i_r}$

where $U \approx M_{i*}, k=1, 2, \dots, r$.

Conversely, let $U \subseteq M_{i_1} \oplus \cdots \oplus M_{i_r}$

and let some element $u \in U$ be expressible as $u = u_{i_1} + \cdots + u_{i_r}$, $u_{i_k} \in M_{i_k}$, $k = 1, 2, \dots, r$ with $u_{i_r} \neq 0$. Then $U \approx M_{i_r}$.

Proof. Let $0 \neq u \in U$. Then by the definition of sum

$$u=u_{i_1}+\cdots\cdots+u_{i_r}, \quad 0 = u_{i_s} \in M_{i_s}$$

with uniquely determined u_{i_1}, \dots, u_{i_r} . Now

$$U = Ru \subseteq Ru_i + \cdots + Ru_i$$

By the irreducibility of the M_i , $Ru_{i*}=M_{i*}$ and therefore

$$U\subseteq M_i+\cdots\cdots+M_{ik}$$

The mapping of U to M defined by

$$au \longrightarrow au_i$$

is an isomorphism by the definition of directness of $M = \sum \bigoplus M_i$ and irreducibility of U. Hence $U \approx M_{ii}$. The converse is proved similarly.

Let M be a completely reducible R-module and let $\alpha \in K = Hom_R(M, M)$. Each homogeneous component H of M is mapped into itself by α since an irreducible R-submodule U contained in H is

either mapped to 0 or to a submodule isomorphic onto U. By Proposition 5, $H_{\alpha}\subseteq H$.

In general, however, a submodule $T \neq 0$ of H_1 is not mapped into itself by all $\alpha \in K$. For T contains an irreducible submodule M, (Proposition 4) which may be mapped isomorphically onto any irreducible submoule M_2 in H_1 by some isomorphism φ . This R-isomorphism φ may be extended to a R-homomorphism

 φ' of M into itself in the following way:

Let
$$M = \sum_{k \in K} H_k$$
 and $H_k = \sum_{\rho \in P_k} M_\rho$ M_ρ irreducible.

Let $W=M_2$. Then the mapping φ' defined by

$$H_k \varphi' = 0$$
 $k \neq 1$

$$M_{\rho}\varphi'=0$$
 $\rho \rightleftharpoons 1$, $\rho \in P_1$

$$m\varphi' = m\varphi$$
 for $m \in M_1$

is an endomorphism of M. This discussion proves the following characterization of the homogeneous components of a completely reducible R-module.

PROPOSITION 6. Let the unital R-module M be completely reducible and $K=Hom_R(M,M)$ is its centralizer. Then the homogeneous components of M are the smallest R-submodules H of M which are also right K-modules.

The following three lemmas are aimed at proving that if M is a completely reducible R-module, then M is also a completely reducible K-module where $K=Hom_R$ (M,M).

LEMMA 1. If R is a ring with identity and M a unital, completely reducible R-module with $M = \sum_{\nu \in J} \bigoplus_{\nu \in I} M_{\nu}$, N_{ν} , M_{μ} irreducible, then cardI = cardJ.

Proof. If both sets I and J are finite, the lemma is an easy consequence of the Jornan-Hölder theorem concerning chains of submodules of M.

We therefore consider only the case where one of the sets, say J, is infinite.

Let $0 \neq X_{\mu} \in M_{\mu}$, $\mu \in I$. Then $X_{\mu} \in \sum_{\nu \in A} N_{\nu}$ for some finite subset A of J. Since M_{μ} is irreducible, $M_{\mu} \subseteq \sum_{\nu \in A} N_{\nu}$. By directness of the sum, there exists a unique minimal finite subset $A(\mu)$ of I such that $M_{\mu} \subseteq \sum_{\nu \in A(\mu)} N_{\nu}$.

This determines a mapping $\mu \longmapsto \Lambda(\mu)$. We claim that $J = \bigcup_{\mu \in I} \Lambda(\mu)$. Suppose $\nu_0 \notin \Lambda(\mu)$ for any

$$\mu \in I$$
. We have $N_{\nu_0} \subseteq \sum_{i=1}^k M_{\mu_i}$ for suitable $\mu_i \in I$. Hence $N_{\nu_0} \subseteq \sum \{N_{\nu} | \nu \in \bigcup_{i=1}^k \Lambda(\mu_i) \}$,

contrary to the directness of the sum $\sum_{\nu \in J} \bigoplus \mathbb{N}_{\nu}$. Therefore card I is greater than or equal to the cardinality of a set of finite subsets of whose union is I. The later has the same cardinality as J. Therefore card $I \ge \text{card } J$. Reversing the argument we obtain $\text{card } J \ge \text{card } I$ and the lemma is proved.

LEMMA 2. Let M be a completely reducible R-module, R a ring with identity.

Then any injective homomorphism of an irreducible submodule M_1 into M may be extended to an automorphism of M.

Proof. Let $M = \sum_{\rho \in P} \bigoplus_{P} \bigoplus$

$$H_1 = (\sum_{\lambda \in A} \bigoplus M_{\lambda}) \oplus M_1$$

and

$$H_1 = (\sum_{\lambda' \in A} \bigoplus M_{\lambda'}) \bigoplus M_{1'}.$$

By Lemma 1 card Λ =card Λ' . There is therefore a one-one corespondence between Λ and Λ' , say $\lambda \longmapsto \lambda'$. Let $\sigma_{\lambda} : M_{\lambda} \to M_{\lambda'}$ be an isomorphism of M_{λ} onto $M_{\lambda'}$ and let σ denote the resulting isomorphism of H_1 onto H_1 . Clearly σ extends σ_1 . Now define τ by

$$m_1\tau = m_1\sigma$$
, $m_1 \in H_1$

 $m_i \tau = m_i, m_i \in H_i, i \neq 1.$

 τ extends σ (and hence σ_1) and is an automorphism of M.

LEMMA 3. Let 1∈R and let M be a unital, completely reducible left R-module, K its centralizer. If $m \neq 0$ belongs to an irreducible submodule U of M, mK is an irreducible right K-module,

Proof. Let $0 \pm m' \in mK$. Then there is $\alpha \in K$ such that $m' = m\alpha$. The mapping $u \mid \longrightarrow u\alpha$ of U onto U_{α} is an isomorphism. By Lemma 2 this may by extended to an automorphism β of M. Therefore $m'=m\beta$ and $m'\beta^{-1}=m$ showing that m'K=mK.

PROPOSITION 7. Let 1∈R and let M be a unital, completely reducible R-module. Then M is also a completely reducible K-module, $K=Hom_R$ (M, M).

Proof. $M = \sum mK$ where m ranges over all nonzero m belonging to irreducible R-submodules.

3. Main theorems.

LEMMA 4. Let R be a ring and M be a completely reducible R-module.

Then an arbitrary submodule of M is also comptelely reducible

Proof. Let $M = \sum_{\lambda \subseteq \Lambda} M_{\lambda}$, M_{λ} irreducible. Then by Proposition 4, there exists $P \subseteq \Lambda$ such that $M=U\oplus\sum_{\rho\in P} M\rho$. Let I=A-P. Then $U=\sum_{i\in I} \oplus M$.

THEOREM 1. Let R be a ring with identity and M be a unital and completely reducible left R-module.

Then M is represented as the direct sum of irreducible submodules $\{M_{\lambda} | \lambda \in \Lambda\}$ each of two submodules of which are not isomorphic, iff every left R-module of M is right K-submodule where $K = Hom_R (M, M)$.

Proof. 1. Suppose $M = \sum_{\lambda \in A} M_{\lambda}$, M_{λ} irreducible, each two submodules in $\{M_{\lambda} | \lambda \in A\}$ are not isomorphic over R. Then Mi is right K-submodule of M by Proposition 6. Let N be a left R-submodule of M. Then

$$N = \sum_{\rho \in P} M_{\rho}$$
 for some $P \subseteq \Lambda$,

 $N = \sum_{\rho \in P} M_{\rho} \text{ for some } P \subseteq \Lambda,$ i.e. $N = \sum_{\rho \in P} M_{\rho}$. Hence N is a right K-submodule.

2. Suppose $M = \sum_{i \in A} \bigoplus M_i$, M_i irreducible and $M_i \approx M_j$ for some $i \neq j$ in Λ .

Let $\varphi: M_i \to M_j$ be the isomorphism of M_i onto M_j .

The mapping $\varphi': M \longrightarrow M$ defined by

$$M_{\lambda}\varphi'=0$$
 for $\lambda \rightleftharpoons i$

$$m\varphi' = m\varphi$$
 for $m \in M_i$

is an endomorphism of M and hence $\varphi' \in K$. Since $M_i \varphi' = M_i \varphi = M_j + M_i$, the left R-submodule M_i is not right K-submodule.

LEMMA 5. If M is an artinian and completely reducible R-module, then M is a finite direct sum of irreducible R-submodules.

Proof. Suppose $M = \sum_{\lambda \in \Lambda} M_{\lambda}$ where M_{λ} are irreducible and Λ is infinite set. Then

$$M = \sum_{i=1}^{\infty} \bigoplus M_i \supset \sum_{i=2}^{\infty} \bigoplus M_i \supset \sum_{i=3}^{\infty} \bigoplus M_i \supset \cdots$$

is an infinite strictly descending chain of R-submodules of M where is a subset of $\{M_{\lambda} | \lambda \in \Lambda\}$. Hence M is not artinian.

THEOREM 2. Let R be a ring with identity and let M be a unital, faithful and completely reducible left R-module. If M is artinian over K where $K=Hom_R(M,M)$, R is isomorphic onto the double centralizer $R^{\circ}(M)=Hom_K(M,M)$,

Proof. For an arbitrary $a \in \mathbb{R}$ the mapping $\alpha : M \longrightarrow M$ defined by $\alpha m = am$ is a K-homomorphism. Hence $\alpha \in \mathbb{R}^{\circ}(M)$. Let $\varphi : \mathbb{R} \longrightarrow \mathbb{R}^{\circ}(M)$ be a mapping defined by $\varphi(a) = \alpha$. Then φ is a injective ring-homorphism of R to $\mathbb{R}^{\circ}(M)$ by Proposition 1, since M is faithful R-module.

We will prove that φ is surjective.

By Proposition 7, M is a completely reducible K-module. Since M is an artinian right K-module, M is a finite direct sum of irreducible right K-submodules by Lemma 5. Let

$$M=M_1 \oplus M_2 \oplus \cdots \oplus M_n$$
, M_i irreducible over K.

Let $0 \le x_i \subseteq M_i$, then $x_i K = M_i$ since K has the identity and M, are irreducible right K-submodules. Hence

$$M = x_1 K \oplus \cdots \oplus x_n K$$

Let $T=M\oplus\cdots\oplus M$, the direct sum of n copies of M. To a given $\alpha\in R^{\circ}(M)$ we define a mapping A of T into itself by

$$A(m_1, m_2, \dots, m_n) = (\alpha m_1, \alpha m_2, \dots \alpha m_n).$$

Then $A \subseteq R^{\circ}(T)$.

Now let X denote the R-submodule of T generated by the element (x_1, x_2, \dots, x_n) . This clearly completely reducible R-module and therefore, by Proposition 3, X is a direct summand of T. By Proposition 2, X is also an $\mathbb{R}^{\circ}(T)$ -submodule of T. Therefore $A(x_1, x_2, \dots, x_n) \in X$. But $X = \{(rx_1, rx_2, \dots, rx_n) | r \in R\}$. Therefore there exists $a \in \mathbb{R}$ such that

$$(ax_1, ax_2, \dots, ax_n) = A(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

Now let x be an arbitrary element of K-module M. Then there exist $k_i \in \mathbb{K}$ such that

$$x = x_1 k_1 + x_2 k_2 + \dots + x_n k_n, \text{ and then}$$

$$\alpha x = \alpha (x_1 k_1 + x_2 k_2 + \dots + x_n k_n)$$

$$= (\alpha x_1) k_1 + (\alpha x_2) k_2 + \dots + (\alpha x_n) k_n$$

$$= (\alpha x_1) k_1 + (\alpha x_2) k_2 + \dots + (\alpha x_n) k_n$$

$$= \alpha (x_1 k_2 + x_2 k_2 + \dots + x_n k_n)$$

$$= \alpha x_1 k_2 + x_2 k_2 + \dots + x_n k_n$$

Hence $\varphi(a) = \alpha$. Therefore φ is a ring-isomorphism of R onto $\mathbb{R}^{\circ}(M)$.

References

- [1] Ernst-August Behrens, Ring Theory, Academic Press, 1972.
- [2] Bourbaki, N., "Algebra", Chapter 8, Modules et anneaux semi-simples, Hermann, Paris, 1958,
- [3] Jacob Barshay, Topics in Ring Theory, W.A. Benjamin, inc. 1969.