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1. Introduction.

Let R be a ring and M a left R-module. Let K=Homg (M, M). We call K the centralizer of R-
module M. Clearly M is a right K-module and hence M is a (R,K)-bimodule.

The centralizer of the right K-module M is™ called the double centralizer of M and is denoted by
R®(M) (or just R° when there is no risk of confusion). We can easily prove that there exists
an embedding of R into the R°(M) when M is faithful over R. In general, R is not isomorphic onto
R°(M) even if M is faithful module.

Bourbaki [2] proved that R is dense in R°(M) with respect to finite topology on R° (M), if R is
a ring with identity and M is a unital, completely reducible and faithful left R-module.

The prrpose of this note is to establish the following results:

If R is a ring with identity and M is a unital, completely reducible and faithful R-module, then

1. Every R-submodule of M is nlso K-module iff every two distinct irreducible direct summands in
a decomposition of M as the direct sum of irreducible submodules arve not isomorphic.

2. If M is artinian over K, R is isomorphic onto the double centralizer R° (M).

2. Preliminaries.

PROPOSITION 1. If M is a faithful R-module, then R is isomorphic onto a subring of R°(M).

Proof. For an arbitrary a<R, the mapping A | M—M defined by Am=am is a K(=Homp(M, M))
-module homomorphism, i.e. A&SR®(M).

Let ¢ : R—R°(M) be a mapping defined by ¢(a) =A. Then ¢ is a ring-homororphism. If ¢(a) =
@(b) am=bm for all meM, that is a—b=(0:M).

But (0:M)=0, since M is faithful R-module. Hence a=5. Therefore ¢ is injective, hence ¢ is an
embedding.

PROPOSITION 2. Let R-submodule U of M be a direct summand of M. Then

1. Uis an R°-submodule of M and

2. If T is an R-submodule of M, every R-homomorphism of U into T is also an R°-homomorphism

of Uinto T.

Proof. 1. Let M=UDU’ and let n&=K=Homz (M,M) be the homomorphism defined by
nim=u+u |—u for U, &'V, i.e. wis the projection of the R-module M onto the R-submodule U.

Let a=R°=Homg (M, M). Then aU=a(Mz) = (aM)zCU.

2. Let g=Homg (M, M) and form zp. Clearly

zpe=Homg (U, T) CHome (M, M).

Hence for an arbitrary a=R° and each w=mn in U,



a(ud) =a(mnp) = (am) Tp= (amn) p= (au) ¢.

If the R-module M is a direct sum of submodules each isomorphic to a module U, then using
Proposition 2, we may show that R°(M) depends only on U and not on the number of summands
occurring in the decomposition of M. The following are familiar propositions. We omit the proof of
these propositions. [1]

PROPOSITION 3. Let M be an R-module. The following are equivalent:

1. M:ZieI M;, M; minimal for all il

(Minimal module is a module which has no submodule other than 0 and itself.)
2. M:ZiEX®Ml’ M; minimal for all A=A,
3. Every R-submodule U of M is a direct summand.

PROPOSITION 4. Let M :Zie ! M, M; minimal R-modules and let U be a submodule of M. Then
there exists ACI such that M= U®er/t@ M.

We say an R-module is completely reducible if any one of the equivalent condition of Proposition 3
holds, and we say an R-module M is irreducible if RMX:0 and M is minimal.

Let R be a ring with identity. Then every minimal unitary R-module is irreducible. We say an
R-module U is Aomogeneous of type I if U is the direct sum of a family {Mi]A=A} of irreducible
R-modules M; each isomorphic onto the irreducible module I.

Let M:ZEA@MJ be a decomposition of M as the sum of irreducible submodules. Partition the set

(M:|A4) into classes Lp, p&P of mutually isomorphic submodules. Let Hp:MZ I%Vh. Then clearly
€Ly

M= EHp.
p=P

The Hp are called the homogeneous components of M.

PROPOSITION 5. Let R be a ring with identity. Let U be an irreducible R-submodule of the R-module
M=Y®M, M; irreducible.

Then Ug 1\4,-l dereannens +M;,

where C UsMi, k=1,2, e . 7

Conversely, let UCM;@+e----e DM,

and let some element u=U be expressible as u=uj ++oreeveer Fui, 4 EMy, E=1,2, 000000000 s T

with u; 0. Then U=M;,.

Proof. Let O0xuc=U. Then by the definition of sum

U=RuCRu;;+ c+eeeee +Ru;,
By the irreducibility of the Mi, Ruw=M;, and therefore

The mapping of U to M defined by

: au \—»au;,

is an isomorphism by the definition of directness of M=3.@M; and irreducibility of U. Hence UM,
The converse is proved similarly.

Let M be a completely reducible R-module and let ec=K=Homg(M,M). Each homogeneous

component H of M is mapped into itself by a since an irreducible R-submodule U contained in H is



either mapped to 0 or to a submodule isomorphic ontoc U. By Proposition 5, H.CH.

In general, however, a submodule T2¢0 of H: is not mapped into itself by all =K. For T contains
an irreducible submodule M, (Proposition 4) which may be mapped isomorphically -onto any irreducible
submoule Mz in H; by some isomorphism ¢. This R-isomorphism ¢ may b¢ extended to a R -homomorphism

¢' of M into itself in the following way:

Let M= Z]Hk and H;,—ZM,; M, irreducible.

PEPx
Let W=M2 Then the mapping ¢’ defined by
Hip' =0 k1

Mpp'=0 pxl, p&EP1

mp' =mp for meEM;
is an endomorphism of M. This discussion proves the following characterization of the homogeneous
components of a completely reducible R-module.

PROPOSITION 6. Let the unital R-module M be completely reducible and K=Homr(M, M) is its
centralizer. Then the homogeneous components of M are the smallest R-submodules H of M which are
also right K-modules.

The following three lemmas are aimed at proving that if M is a completely reducible R-module, then
M is also a completely reducible K-module where K=Homgz (M, M).

LEMMA 1. If R is a ring with identity and M a unital, completely reducible R-module with

M= ®M,= Z@M#, N,, M, irreducible, then cardI=cardJ.
veJ

Proof. If both sets I and J are finite, the lemma is an easy consequence of the Jornan- Holder
theorem concerning chains of submodules of M.
We therefore consider only the case where one of the sets, say J, is infinite.

Let 05X,EM,, p<I. Then X,& z;AN, for some finite subset A of J. Since M, is irreducible,
ve
M,CYN,. By directness of the sum, there exists a unique minimal finite subset A(z) of T such
ved

that M,C 3. N..
ved(y)

This determines a mapping g I—>A(x). We claim that J= U;I(p). Suppose voggA(y) for any
=3

pusI. We have NW,CZM#, for suitable x;&I. Hence
NvoCZ {N, ]VEU/I(,U,)

contrary to the directness of the sum S,@N,. Therefore cardl is greater than or equal to the
veJ

cardinality of a set of finite subsets of whose union is I. The later has the same cardinality as J.
Therefore card] >>card J. Reversing the argument we obtain cardJ>card] and the lemma is proved.
LEMMA 2. Let M be a completely reducible R-module, R a ring with identity.

Then any injective homomorphism of an irreducible submodule M, into M may be extended to an
automorphism of M.

Proof. Let M=3Y @H, be the decomposition of M into its homogeneous components and suppose
peP

MiCH. Let 61 be an isomorphism of M; onto My say. My is also contained in Hy. Now by
Proposition 4

Hi= (32OM:) &M
=y
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and
H= (2 OMr) BMy.
reA

By Lemma 1 cardd=cardA’. There is therefore a one-one corespondence between A and A, say
21—, Let 0:: Ma—Mz be an isomorphism of M, onto My and let o denote the resulting isomorphism
of H; onto Hy. Clearly o extends 1. Now define 7 by

mit=mo, mcEH;

. mit=m;, m;<H; ixl.

7 extends ¢ (and hence 1) and is an automorphism of M.

LEMMA 3. Let 1&R and let M be a unital, completely reducible left R-module, K its centralizer.
If m>c0 belongs to an irreducible submodule U of M, mK is an irreducible right K-module.

Proof. Let 0xxm'&mK. Then there is ® =K such that m' =ma. The mapping # i—> ua of U onto Us
is an isomorphism. By Lemma 2 this may by extended to an automorphism 8 of M. Therefore m’ =mf
and m'81=m showing that m'K=mK.

PROPOSITION 7. Let 1R and let M be a unital, completely reducible R-module. Then M is also
a completely reducible K-module, K=Homr (M, M).

Proof. M=Y_mK where m ranges over all nonzero m belonging to irreducible R-submodules.

3. Main theorems.
LEMMA 4. Let R be a ring and M be a completely reducible R-module.

Then an arbitrary submodule of M is also comptelely reducible
Proof. Let M:):;GM;, M, irreducible. Then by Proposition 4, there exists PCA such that
L=

MZU@Z@ Mp. Let I=4A—P. Then U=3PM.
1= H =
THEOREM 1. Let R be a ring with identity and M be a unital and completely- reducible lefr

R-module.
Then M is represented as the direct sum of irreducible submodules (Mi|Ae=A} eack of two

submadules of which are not isomorphic, iff every left R-module of M is right K-submodule where
K=Homgr (M, M). .
Proaf. 1. Suppose M:} Z‘,AEBM;, M, irreducible, each two submodules in {(Mi|A&A4} are not
=
isomorphic over R. Then M; is right K-submodule of M by Proposition 6. Let N be a left R-submodule

of M. Then
N=3PMp for some PC 4,
=P
i.e. N:Z}l’vIp. Hence N is a right K-submodule.
2. Stlfpose M=1§E]1€‘DM1, M:  irreducible and M;~M; for some #3j in A
Let ¢:M;—M; be the isomorphism of M; onto M;.
The mapping ¢':M——>M defined by
Mp'=0 for Axi
mp’ =mp for m&M; .
is an endomorphism of M and hence ¢'&K. Since Mip' =Mip=M;XxM;, the left R-submodule M; is

not right K-submodule.
LEMMA 5. If M is an artinian and completely reducible R-module, then M is a finite direct sum

of irreducible R-submodules.
—_14—



Proof. Suppose M=;?M1 where M; are irreducible and A is infinite set. Then
=

M:g@MDg@MDg@MD -----
is an infinite strictly descending chain of R-submodules of M where is a subset of {Mi|A=4}. Hence
M is not artinian.

THEOREM 2. Let R be aring with identity and let M be a unital, faithful and completely reducible
left R-module. If M is artinian over K where K=Homp (M, M), R is isomorphic onto the double
centralizer R° (M) =Homg (M, M),

Proof. For an arbitrary a&=R the mapping @ : M——M defined by am—am is a K-homomorphism.
Hence a=R° (M). Let ¢ : R—>R° (M) be a mapping defined by ¢(a)=a. Then ¢ is a injective
ring-homorphism of R to R°(M) by Proposition 1, since M is faithful R-module.

We will prove that ¢ is surjective.

By Proposition 7, M is a completely reducible K-module. Since M is an artinian right K-module, M
is a finite direct sum of irreducible right K-submodules by Lemma 5. Let

M=MiPD MzP:++e-s+-PBMn, M; irreducible over K.
Ler 0lraEM;: thea mK=M; sinee X nszo the identity and M, are irreducitle rizht K-subrodules.
Hence
M=nXE e PrX,
Lot T=M®- @M, the direct sum of # copies of M. Toa given &= R° M) we define a masiir
A of T into itseif by
A (o, gy -vereens it = (@m, Qitgy +-oveeee amn).
Then Ask® ().
Now let X dercte the R-submodule of T generated by the element lri co oo 25, 7. 03 clesrly

completely reducihle R-module znid therefore, by Proposition 3, X is a direct summa.d of I. By

Propesition 2, X is alsc an R°(T)-submodule of T. Therefore A(xy, gy roveveer- , wn) X Bui
X={{rzs, 7z ++-+++, rxn)|7ER}. Therefore there exists a=R such that
(aix1, @xzy - vy ) =A(Z1, gy weeeeeee s Zn) =(AT1, QT eereeeees , azn).
Now let z be an arbitrary element of K-module M. Then there exist %=X such tha?
z=axikitaokyteeereees + ks, and then
ax:a(x1k1+x2k2+ ......... “+Zukn)
= (axl) ki+ (axz)_§2+ ......... + (axn) b
= (ax;).r’s;—{— '(Ez'a) k2+ ......... + (ax,;) ka
salm s b oabp e 2, 0)
—ez
Hence ¢(2) =a. Therefors ¢ is a ring-iscmorphism of R onto R°(M).
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