EXTERME POINTS OF THE SHELL OF A LINEAR RELATION

BY SA-GE LEE

Let \(A \) be a bounded linear operator defined on a complex Hilbert space \(H \) with inner product \(\langle \cdot, \cdot \rangle \). Let \(W(A) = \{ \langle Ax, x \rangle : \|x\| = 1, \ x \in H \} \) be the numerical range of \(A \). For each complex number \(z \), let \(M_z \) denote the subset of \(H \), \(\{ x \in H : \langle Ax, x \rangle = z \|x\|^2 \} \). In [5], M. Embry characterized the extreme points of \(W(A) \) in terms of \(M_z \). We obtain an analogy of her result in the setting of the shell \(s(A) \) of a linear relation \(A \) in \(H \) (Theorem). In preparing for the proof of our main result, we also get several lemmas which might be useful in their own right.

The notion of the shell \(s(A) \) of a linear relation \(A \) in a Hilbert space \(H \) was introduced by C. Davis in [1], as a solid in the three dimensional Euclidean space \(\mathbb{R}^3 \). To get familiar with the tools and terminologies which will be used later, we review first some rudiments of [1], [2].

Let \(\mathbb{C} \) denote the extended complex plane, \(\mathbb{C} \cup \{ \infty \} \), and \(B \) the unit ball of \(\mathbb{R}^3 \). Let \(\zeta, h \) be a complex number and a real, respectively.

We define a mapping \(\theta : B \to \mathbb{C} \), by sending \((\zeta, h) \) to the point \(z \in \mathbb{C} \) such that \((\zeta, h) \) is located on the line passing through the point \((z, 0)\) and the north pole \((0, 1)\) of \(B \). That is, \(\theta(\zeta, h) = \frac{\zeta}{\bar{h}} \), \(h \neq 1 \) and \(\theta(0, 1) = \infty \).

Let \(S \) denote the unit sphere \(\{ (\zeta, h) \in \mathbb{R}^3 : |\zeta|^2 + h^2 = 1 \} \). The stereographic projection \(\tau : \hat{C} \to S \) is defined as follows: \(\tau(z) = \left(\frac{2z}{1 + |z|^2}, -\frac{1 + |z|^2}{1 + |z|^2} \right), \ z \in \mathbb{C} \) and \(\tau(\infty) = (0, 1) \).

Note that \(\theta(\tau(z)) = z \), for all \(z \in \hat{C} \).

A M"obius transformation \(\mu : \hat{C} \to \hat{C} \) is defined by sending \(z \in \mathbb{C} \) to \(\mu(z) = \frac{az + b}{cz + d}, \) where \(ad - bc \neq 0 \) and \(\mu(\infty) = \frac{-a}{c} \). This leads us to define the Möbius transformation, again denoted by \(\mu : S \to S \) by sending \(\tau(z) \) to \(\tau(\mu(z)) \), for \(z \in \mathbb{C} \). If we put \(\tau(z) = (\zeta, h) \), \(\mu(\tau(z)) = (\zeta', h') \), then the coordinates are related by the following matrix equation (p. 77 [1]).

\[
\begin{bmatrix}
1 + h' \\
\zeta' \\
1 - h'
\end{bmatrix} =
\begin{bmatrix}
a \bar{a} & \bar{b} & b \bar{a} & \bar{b} \\
a \bar{c} & \bar{d} & b \bar{c} & d \bar{b} \\
\bar{c} & \bar{d} & \bar{d} & \bar{d}
\end{bmatrix}
\begin{bmatrix}
1 + h \\
\zeta \\
1 - h'
\end{bmatrix}.
\]

Now if we apply the above equation (1) to the points \((\zeta, h), (\zeta', h') \) of the unit ball \(B \), where \(1 \)'s are replaced by \(\sqrt{|\zeta|^2 + h^2} \), we still get a mapping, also called the Möbius transformation \(\mu \) of \(B \) onto itself, which sends \((\zeta, h) \) to \((\zeta', h') \). In the case \(d = \bar{a}, \ c = -\bar{b} \), the Möbius transformation \(\mu \) is just a typical rigid rotation of the unit ball \(B \).
Let A be a linear relation in H, that is, a linear subspace of $H \oplus H$. The shell $s(A)$ of A is defined as the set all points

$$\left\{ \left(\frac{2<y,x>}{\|y\|^2+\|x\|^2}, \frac{-\|x\|^2+\|y\|^2}{\|x\|^2+\|y\|^2} \right) : (y,x) \in A, (y,x) \neq (0,0) \right\}.$$

(p. 70, Definition 1.1 [1]). If $\dim(H) \geq 3$, then $s(A)$ is a convex subset of the unit ball B (p. 304 Theorem 10.1 [2]). Let $I = \{(y,x) \in A : y = x\}$. The point spectrum $\sigma_p(A)$ of A is defined by $\sigma_p(A) = \{z \in C : (A-zI) \cap \{(0,0) \oplus H\} \neq \{(0,0)\}\}$, with ∞ adjoined if $0 \in \sigma_p(A^{-1})$, where $A^{-1} = \{(x,y) \in H \oplus H : (y,x) \in A\}$. The approximate point spectrum $\sigma_a(A)$ of A is the set $\{z \in C : \exists \,(y_m,x_m) \in A, \exists \, n \geq 1 \text{ and } \|y_m\| \to 0 \}$. (p. 71 Definitions 2.1–2.5, Proposition 2.1 [1]). Then we have

$$\bigcap \sigma(A) = \tau(\sigma_p(A))$$

and

$$\bigcap \mathcal{S}(A) = \tau(\sigma_a(A))$$

where $\mathcal{S}(A)$ denote the closure of $s(A)$ in \mathbb{R}^2. The numerical range $W(A)$ of A is defined as the set $\{<y,x> : \|x\| = 1, (y,x) \in A\}$, with ∞ adjoined in the case $\infty \in \sigma_a(A)$ (p. 73 Definition 3.1 [1]). It is easy to see that

$$\theta(s(A)) = W(A)$$

and

$$\mu(W(A)) = W(\mu(A)).$$

For the μ as above, the Möbius transformation $\mu(A)$ of a subset A of $H \oplus H$ (i.e., a relation A in H), is defined by

$$\mu(A) = \{(ay+bx, cy+dx) : (y,x) \in A\}$$

(p. 77 [1]).

For a linear relation A, we have

$$\mu(s(A)) = s(\mu(A))$$

(p. 78 Theorem 5.1 [1]).

The next lemma was obtained by Embry (pp. 647–648, Lemma 1[5]). We state it here without proof.

Lemma 1. Let A be a bounded linear operator on a Hilbert space H. For each complex number λ, denote $M_{\lambda} = \{x \in H : <Ax,x> = \|x\|^2\}$. Let z be in the interior of a line segment with end points a and b in $W(A)$. Let ϵ be the largest number ϵ (in the open interval $0,1$) and a complex number α, $|\alpha| = 1$ such that $tx + (1-t)\alpha \in M_\lambda$ and $sx - (1-s)\alpha \in M_\lambda$. Consequently, $M_{\lambda} \subseteq M_z + M_z = A$.

The above lemma is extended easily to the case of a linear relation A.

Lemma 2. Let A be a linear relation in a Hilbert space H, with $\infty \notin \sigma(A)$. For each complex number λ, denote $Y_\lambda = \{(y,x) \in A : <y,x> = \lambda \|x\|^2\}$. Let z be in the interior of a line segment with end points a and b in the numerical range $W(A)$ of A. Then $Y_z \subseteq Y_a + Y_b = A$.
Proof. Let \((y_1, x_1) \in Y_a\) and \((y_2, x_2) \in Y_b\) with \(\|x_2\| = 1\). We want to show that \((y_2, x_1) \in Y_a + Y_b\). Since \(\infty \in \sigma_p(A)\), we may assume that \(x_1 \neq 0\). Also, since \(Y_a, Y_b + Y_a\) are homogeneous, we can still assume that \(\|x_1\| = 1\). A simple computation shows that \(x_1\) and \(x_2\) must be linearly independent, by using the fact that \(\infty \in \sigma_p(A)\). We consider the Hilbert space \(H_1\) spanned by \(x_1, x_2, y_1\) and \(y_2\). Then we find a linear operator \(A_1\) on \(H_1\) such that \(A_1 (x_i) = y_i, i=1, 2\). By applying the previous Lemma 1, we see easily that \((y_2, x_1) \in Y_a + Y_b\) and that \(Y_b + Y_a\) is a linear subspace of \(A\), ie. \(A = Y_a + Y_b\) (cf. p. 648 Proofs of Lemma 1, Theorem 1 (iii), [5]). Q.E.D.

Corollary 3. Let \(A\) be a linear relation in \(H\) with \(\infty \in \sigma_p(A)\). Let \(z \in W(A)\) and \(Y_z\) be as in the above lemma. If \(Y_z\) is a linear subspace of \(A\), then \(z\) is an extreme point of \(W(A)\) (cf. p. 647 Theorem I(i) [5]).

Proof. The proof is similar with that of Theorem 1(i), p. 648 [5] and omitted. Q.E.D.

Lemma 4. Let \(A\) be a linear relation in a Hilbert space \(H\). Let \(\mu\) be a Möbius transformation of \(A\) onto another relation \(A'\) in \(H\), by \((y, x) \rightarrow (ay + bx, cy + dx), ad - bc \neq 0\). Then the following hold.

(i) \(A'\) is also a linear relation and \(\mu\) is a topological linear isomorphism on \(A\) onto \(A'\), with respect to the norms \(\|(y, x)\| = \|y\| + \|x\|\), \((y, x) \in A\) and also for \((y, x) \in A'\).

(ii) If \(A\) is closed, so is \(A'\).

Proof. The verifications are elementary and omitted. Q.E.D.

The next lemma is also considere as a natural generalization of theorem 1 (ii), p. 647 and Lemma 2, p. 648 [5]. But our proof appears more translucent in the new setting of the linear relation.

Lemma 5. Let \(A\) be a linear relation in a Hilbert space \(H\) with \(\infty \in \sigma_p(A)\). As in Lemma 2, let \(Y_L = \{(y, x) \in A : \langle y, x \rangle = \lambda \|x\|\} for a complex number \(\lambda\). Let \(z \in W(A)\) and \(L\) be a supporting line of \(W(A)\) through \(z\). Then the following hold.

(i) \(A_L = \bigcup \{ Y_L : \lambda \in L \} \subset W(A)\) is a linear subspace of \(A\).

(ii) If \(z\) is an extreme point of \(W(A)\) then \(Y_z\) is a linear subspace of \(A\).

(iii) \(A_L = A\) if and only if \(W(A) \subseteq L\).

(iv) If \(A\) is closed, so are \(A_L\) and \(Y_z\).

Proof. (i) Note that \(\infty \in W(A)\), since \(\infty \in \sigma_p(A)\). We can find a suitable affine transformation \(\mu\) of the plane such that the following is true. \(\mu(W(A))\) is contained in the closed left half-plane, with respect to the imaginary axis, \(\mu(L)\) is the imaginary axis and \(\mu(z) = 0\), the origin of the plane. Note that \(\mu(W(A)) = W(\mu(A))\), by the identity (5). Let \([\mu(A)]\) denote the set of all \((y, x) \in H \oplus H\) such that \((y, u), (v, x) \in \mu(A)\) for some \(u, v \in H\). Clearly \(\mu(A) \subseteq [\mu(A)]\). We consider the real valued functional \(f\) on \([\mu(A)]\), defined by \(f(y, x) = \text{Re} \langle y, x \rangle\), where \((y, x) \in [\mu(A)]\). Note that \(f\) is a bilinear form on \([\mu(A)]\) with respect to the real scalar multiplication. Let \(\mu(A)_1 = \{(y, x) \in \mu(A) : \text{Re} \langle y, x \rangle = 0\} = \{(y, x) \in \mu(A) : f(y, x) = 0\}.\) We claim that \(\mu(A)_1\) is a linear subspace of \(\mu(A)\). Let \((y_i, x_i) \in \mu(A)_1, i = 1, 2\). Then \(f(y_1 + y_2, x_1 + x_2) = f(y_2, x_1) + f(y_1, x_2) = 0\).
Similarly $f(y_1-y_2, x_1-x_2) = -f(y_2, x_1) - f(y_1, x_2) \leq 0$.

If follows that $f(y_1 + y_2, x_1 + x_2) = 0$, proving that $\mu(A)$ is linear. But a simple computation shows that $\mu(A_1) = \mu(A)$. Therefore A_1 is linear as well, by Lemma 4 (i).

(ii) Let Z be an extreme point of $W(A)$. We consider $\mu(A) = \{(y, x) \in \mu(A) : <y, x> = 0\}$, where μ is as in the proof of (i) above.

Since $\mu(Y_2) = \mu(A)$, it only needs to show that $\mu(A)_0$ is a linear subspace of $\mu(A)$. But $\mu(A)_0 = \{(y, x) \in \mu(A) : \text{Im} <y, x> = 0\}$. Since 0 is an extreme point of $\mu(A)$, we see that $\text{Im} <y, x> \leq 0$, for all $(y, x) \in \mu(A)_1$ or $\text{Im} <y, x> \geq 0$, for all $(y, x) \in \mu(A)_1$. Let $[\mu(A)]$ be similarly defined as $[\mu(A)]$ above. We consider again a real bilinear form g on $[\mu(A)]$ by defining $g(y, x) = \text{Im} <y, x>$, for $(y, x) \in [\mu(A)]$. By the same procedure as for $\mu(A)$ and f above, we can conclude that $\mu(A)_0$ is linear.

(iii) Obvious. (iv) It follows from Lemma 4 (ii). Q.E.D.

The necessity implication of the next proposition was overlooked in [5] even for a bounded operator A.

Proposition 6. Let A be a linear relation in a Hilbert space H with $\sigma_P(A)$. Let Y_i denote as in the above Lemma 5. Define $A_1 = \bigcup \{ Y_i : \lambda \in L \cap W(A) \}$. Then A_1 is linear if and only if L is a supporting line of $W(A)$ through z.

Proof. We only need to prove the necessity. First observe that every point $\lambda \in L \cap W(A)$ can not be located in the interior of a line segment whose end points a, b are in $W(A)$ and $a \in L \cap W(A)$. For, if it were, then $Y_a \subset Y_k + Y_l \subset A_1 + A_1 = A_1$, by Lemma 2, a contradiction. Q.E.D.

Lemma 7. Let A be a linear relation in a Hilbert space H. Let

$$\zeta(y, x) = \frac{2<y, x>}{||x||^2 + ||y||^2}, \quad h(y, x) = \frac{-||x||^2 + ||y||^2}{||x||^2 + ||y||^2} \quad \text{and} \quad s(y, x) = (\zeta(y, x), h(y, x)) \in B, \text{ the unit ball of } \mathbb{R}^2, \text{ for } (y, x) \in A, (y, x) \neq (0, 0).$$

Let β be the uniquely determined number, $0 \leq \beta \leq \infty$ such that $\sup \{ h(y, x) : (y, x) \in A \sim \{(0, 0)\} \} = -\frac{1 + \beta^2}{1 + \beta^2}$, that is, β is the norm $||A||$ of A (of P. 81 Definition 7.1 [1]). Then the following hold.

(i) Let $h_1 = -\frac{1 + \beta^2}{1 + \beta^2}$. Then the set $A_1 = \{(y, x) \in A : (-||x||^2 + ||y||^2) = h_1(||x||^2 + ||y||^2)\}$ is a linear relation.

(ii) If A is closed, so is A_1.

Proof. (i) If $h_1 = 1$, namely $\beta = \infty$, then the proof is obvious. Let $-1 \leq h < 1$. It is immediate to see that $A_1 = \{(y, x) \in A : ||y|| = \beta||x||\}$, and $||y|| \leq \beta||x||$ for all $(y, x) \in A$. Now let $(y_i, x_i) \in A$, $i = 1, 2$. By the parallelogram law, $||y_1 + y_2||^2 + ||y_1 - y_2||^2 = 2||y_1||^2 + 2||y_2||^2 = 2\beta^2(||x_1||^2 + ||x_2||^2) = \beta^2(||x_1 + x_2||^2 + ||x_1 - x_2||^2)$. Therefore, $||y_1 + y_2||^2 = \beta^2||x_1 + x_2||^2 + \beta^2||x_1 - x_2||^2$, since $||y_1 - y_2|| \leq \beta||x_1 - x_2||$. But $||y_1 + y_2|| \leq \beta||x_1 + x_2||$. It follows that $||y_1 + y_2|| = \beta||x_1 + x_2||$ and $(y_1, x_1) + (y_2, x_2) \in A_1$.

(ii) Straight-forward. Q.E.D.

Our main theorem is an analogy of Theorem 1 (i) [5] of Embry.

Theorem. Let A be a linear relation in a complex Hilbert space H of dimension ≥ 3.

Sa-Ge Lee
For each \(u = (\zeta, h) \in s(A) \), where \(\zeta \) is a complex number, \(h \) a real, let \(Y_{u} = \{ (y, x) \in A : 2\langle y, x \rangle = \zeta (\|x\|^2 + \|y\|^2) \text{ and } -\|x\|^2 + \|y\|^2 = h (\|x\|^2 + \|y\|^2) \} \). Suppose that \(u \) is a boundary point of \(s(A) \) then \(u \) is an extreme point of \(s(A) \) if and only if \(Y_{u} \) is a linear subspace of \(H \).

Proof. In the case that \(u \in S \), the unit ball, the assertion can be proved easily by the identity (2). Now let \(u \in S \). Let \(L \) denote a supporting plane of \(s(A) \) through \(u \). We draw a straight line from the origin of \(S \) to the direction of the open halfspace determined by \(L \), that does not meet with \(s(A) \), such that the line is also perpendicular to \(L \). Let \(v \) be the intersection of \(S \) with this line. Then \(v \in s(A) \). Let \(\mu \) be a Möbius transformation of \(B \) which brings \(v \) to the north pole of \(B \), by a rigid rotation. Then \(\mu(v) \in s(\mu(A)) \) by (7).

Now let \(L' \) denote the plane rotated from \(L \) by \(\mu \). Clearly \(L' \) is a supporting plane of \(s(\mu(A)) \) at \(\mu(u) \) and it is parallel to the complex plane. Let \(Y_{w} = \{ (0, 0) \} \cup \{ (y, x) \in \mu(A) : s(y, x) = w \in s(\mu(A)) \} \). Let \(\mu(A)_{1} = \{ Y_{w} : w \in L' \cap s(\mu(A)) \} \).

By Lemma 7 (i), \(\mu(A)_{1} \) is a linear subspace of \(\mu(A) \). Note that \(s(\mu(A)_{1}) = L' \cap s(\mu(A)) \). Let \(Y = \bigcup \{ Y_{w} : w \in L \cap s(A) \} \).

We claim that \(\mu(Y_{u}) = \mu(A)_{1} \) and

\[\mu(Y_{u}) = Y_{\mu(u)} \quad (8) \]

We shall only verify (8). Let \((y, x) \in Y_{u} \), so \(s(y, x) = u \) (See Lemma 7 for the notation of \(s(y, x) \). Then \(\mu(u) = \mu(s(y, x)) = s(\mu(u)) \), by (6). It follows that \(\mu(y, x) = Y_{\mu(u)} \).

Now \(W(\mu(A)_{1}) = \theta(s(\mu(A)_{1})) \), by (4). Note that \(\theta \) is a one to one correspondence which sends a line segment to a line segment. Let \(Y_{\theta(\mu(u))} = \{ (y, x) \in \mu(A)_{1} : \langle y, x \rangle = \theta(\mu(u)) \} \).

It is immediate to see that

\[Y_{\mu(u)} = Y_{\theta(\mu(u))} \quad (9) \]

Now we have the following chain of equivalent statements from (a) to (g).

(a) \(u \) is an extreme point of \(s(A) \).
(b) \(\mu(u) \) is an extreme point of \(s(\mu(A)) \).
(c) \(\mu(u) \) is an extreme point of \(s(\mu(A)_{1}) \).
(d) \(\theta(\mu(u)) \) is an extreme point of \(W(\mu(A)_{1}) \).
(e) \(Y_{\mu(u)} \) is linear (Corollary 3, Lemma 5 (ii) and the above (9)).
(f) \(Y_{u} \) is linear (the identity (8)). Q.E.D.

Remark. Let \(u \) be an arbitrary point of \(s(A) \) in the above theorem. Question: If \(Y_{u} \) is linear, must \(u \) lie on the boundary of \(s(A) \)? We conjecture that the answer is positive.

References

Seoul National University