ON QUASI-SEMIDEVELOPABLE SPACES

By Il Hae Lee

1. Introduction.

In recent years there have been several studies concerning the generalization of developable spaces. H. R. Bennett [3] defines a quasi-developable space which is useful to obtaining metrization theorems for M_i-spaces ($i=1, 2, 3$). C. C. Alexander [1] introduced semi-developable spaces and proves that a space is semi-metrizable if and only if it is semi-developable T_0-space. He also introduces cushioned pair semidevelopable spaces [2] to obtain a generalization of Morita's metrization theorem.

In the paper [8] we have generalized developable spaces further and introduced a quasi-semidevelopable space which includes both classes of semi- and quasi-developable spaces. We denote a quasi-semidevelopable space by a qs-developable space as in [8]. Thus we have shown that

(1) A space is semi-developable if and only if it is qs-developable and perfect.
(2) In a qs-developable space hereditary χ_1-compactness, hereditary Lindelöf property and hereditary separability are equivalent.

(3) A separable regular T_0-space with a point-finite qs-development is metrizable.

In the present paper we extend some of the results appeared in [8]. A qs-stratifiable space is defined and show that it is semi-stratifiable if it is perfect. The closure preserving property for the qs-developable space is investigated to find relations between qs-developable spaces and M_i-spaces. By doing so, we get an example which shows that a regular closure preserving semi-developable space is not always metrizable. We give more general definition of cushioned pair qs-development than the one appeared in [8]. Thus we obtain a generalization of theorem 2.3 of [8].

By a space we will mean a topological space in this paper. We assume every topological space is T_1 unless otherwise mentioned. We adopt the convention if G is a subset of a topological space X, then $\text{Int}(G)$ denotes the interior of G in X and $\text{cl}(G)$ denotes the closure of G in X. If G is a collection of sets, then $G^* = \bigcup \{g | g \in G\}$. Finally N denotes the set of all positive integers. All undefined terms are as in [7].

2. Quasi-semidevelopable spaces.

Let $\gamma = (\gamma_1, \gamma_2, \cdots)$ be a sequence of collections of subsets of a topological space (X, τ). Consider following three conditions of the sequence γ:

(1) For each $x \in X \{\text{St}(x, \gamma_n) | n \in N, \quad x \in \gamma_n^*\}$ is a local basis at x.
(2) Each γ_n is a covering of X.
(3) Each γ_n is a subclass of τ.

The condition (1) is equivalent to the following:

Received by the editors Feb. 15, 1975.
(a) For each \(x \in X \) and for each positive integer \(n \) \(St(x, r_n) \) is a neighborhood of \(x \) provided \(St(x, r_n) \neq \emptyset \), and

(b) For each \(x \in X \) and for each open set \(U \) containing \(x \) there exists a positive integer \(n \) such that \(x \in St(x, r_n) \subseteq U \).

If \(\gamma \) satisfies all the above three conditions (1), (2) and (3), then \(\gamma \) is called a development for the space \(X \). And \(\gamma \) is a semi-development for \(X \) if it satisfies only the two conditions (1) and (2) \([1]\). On the other hand if \(\gamma \) satisfies the conditions (1) and (3), then it is called a quasi-development for \(X \) \([3]\).

We generalize these spaces and define a new class of spaces.

Definition 2.1. A sequence \(\gamma = (\gamma_1, \gamma_2, \cdots) \) of collections of subsets of a space \(X \) is a quasi-semidevelopment for \(X \) if \(\gamma \) satisfies the condition (1).

A space is said to be quasi-semidevelopable if it has a quasi-semidevelopment.

From the definition it is clear that semi-developable spaces and quasi-developable spaces are qs-developable.

G. D. Creede \([6]\) introduced a class of semi-stratifiable spaces as a generalization of semi-metric spaces. He shows that a \(T_1 \)-space is semi-metric if and only if it is first countable and semi-stratifiable. The class of semi-stratifiable spaces contains \(M_3 \)-spaces \([4]\). (For the definition of \(M_3 \)-spaces see section 3.) Now we introduce a class of qs-stratifiable spaces as a generalization of qs-developable spaces and show that a qs-stratifiable space is semi-stratifiable if it is perfect.

Lemma 2.2. A space \(X \) is \(T_1 \) and qs-developable if and only if there is a mapping \(g: \mathbb{N} \times X \to P(X) \) such that

1. the set \(Z_x = \{ n \in \mathbb{N} \mid g(n, x) \neq \emptyset \} \) is infinite,
2. the collection \(\{ g(n, x) \mid n \in Z_x \} \) is a local basis at the point \(x \),
3. for each \(i, k \in Z_x \), \(g(i, x) \subseteq g(k, x) \) if \(i < k \),
4. if \(x \in g(n, x) \) for every \(n \in Z_x \), then \(x \) is a cluster point of the sequence \(\langle x_n \rangle \), and
5. if \(x \in g(n, y) \), then \(x \in g(n, x) \).

Proof. Let \(\gamma = (\gamma_1, \gamma_2, \cdots) \) be a qs-development for the space \(X \). We may assume that the set \(\{ n \mid x \in \gamma_n \} \) is infinite for each point of \(X \). Let \(f: \mathbb{N} \times X \to P(X) \) be the mapping such that \(f(n, x) = St(x, \gamma_n) \) and \(Z_x = \{ n \in \mathbb{N} \mid f(n, x) \neq \emptyset \} \). Then clearly the set \(Z_x \) is infinite. In order to get a mapping which satisfies the above conditions we define a mapping \(g \) as follows:

\[
g(n, x) = \begin{cases} \bigcap_{i \in Z_x} f(i, x) & \text{if } n \in Z_x' \\ \emptyset & \text{if } n \notin Z_x' \end{cases}
\]

The set \(Z_x = \{ n \in \mathbb{N} \mid g(n, x) \neq \emptyset \} \) is infinite since \(Z_x = Z_x' \). Clearly \(\{ f(n, x) \mid n \in \mathbb{N} \text{ and } x \in \gamma_n \} \) is a local basis at \(x \) for each \(x \in X \), and so is \(\{ g(n, x) \mid n \in Z_x \} \). The third property of the lemma is clear.

To show (4), let \(x \in g(n, x) \) for every \(n \in Z_x \). Then it is easily seen that \(x_n \) is in every \(g(n, x) \) for \(n \in Z_x \). Since the sequence of sets \(\{ g(n, x) \} \) is decreasing, \(x \) is a cluster
point of the sequence \(\langle x_n \rangle \).

To show the last property, let \(x \in g(n, y) \). Then \(x \in \bigcap_{i \in \mathbb{Z}_+} f(i, y) \) which is a subset of \(f(n, y) \) where \(n \in \mathbb{Z}_+ \). Therefore \(x \in ST(y, r_n) \). This implies that \(y \in f(n, x) \) and \(n \in \mathbb{Z}_+ \).

Now we prove the converse. Let \(\gamma_n = \{ \{ x, y \} \mid y \in g(n, x) \wedge x \in g(n, y) \} \).

Each \(\gamma_n \) is a collection of subsets of \(X \) which has two elements. For the sequence \(\langle \gamma_n \rangle \) it can be shown that \(\{ ST(x, \gamma_n) \} \) is a local basis of \(x \). Thus the collection \(\langle \gamma_1, \gamma_2, \ldots \rangle \) is a \(q_s \)-development for \(X \).

The above lemma motivates us to formulate the concept of \(q_s \)-stratifiable spaces by a slight modification of the necessary condition of lemma 1.5. We state the formal definition as follows:

Definition 2.3. A topological space \((X, \tau) \) is said to be \(q_s \)-stratifiable if there exists a mapping \(f : N \times X \to \tau \) such that
1. \(Z_x = \{ n \mid f(n, x) \neq \emptyset \} \) is infinite.
2. \(x \) belongs to the intersection of \(f(n, x) \) for all \(n \) in \(Z_x \).
3. If \(x \) belongs to \(f(n, x_n) \) for every \(n \) in \(Z_x \), then \(x \) belongs to the closure of \(\{ x_1, x_2, \ldots \} \) and
4. \(n \) is an element of \(Z_x \) whenever \(x \in f(n, y) \).

If we set \(f(n, x) = \text{Int}(g(n, x)) \), where \(g(n, x) \) is that of lemma 2.2, then clearly \(f(n, x) \) satisfies all the above conditions. Therefore every \(q_s \)-developable space is \(q_s \)-stratifiable.

Lemma 2.4. A space is \(q_s \)-stratifiable if and only if there is an open covering \(\langle O_n \rangle \) of \(X \) such that
1. for each \(x \) there exist infinitely many \(O_n \) which contain \(x \) and
2. for each open set \(U \) there corresponds a sequence of closed sets \(\langle U_n \rangle \) such that \(U = \bigcup_x (U_n \cap O_n) \)

and

\[U_n \subset V_n \quad \text{if} \quad U \subset V. \]

Proof. Suppose \(X \) is \(q_s \)-stratifiable under the mapping \(f : N \times X \to \tau \). Let \(O_n = \bigcup_{x \in X} f(n, x) \).

Then clearly \(\bigcup_n O_n = X \). Furthermore each \(O_n \) is characterized by the set \(Z_x \), namely,

\[\bigcup_{x \in X} f(n, x) = \{ x \in X \mid x \in f(n, x) \}. \]

For an open set \(U \) let

\[U_n = X - \bigcup_{x \in X - U} f(n, x). \]

Then \(\langle U_n \rangle \) is a sequence of closed sets. It is not difficult to verify that \(U_n = \bigcup (U_n \cap O_n) \).

The remaining part of the theorem is an easy consequence of the fact that \(\bigcup_{x \in X - U} f(n, x) \)
To prove the converse we set \(f(n, x) = (X - (X - x_n)) \cap O_n \).

Then \(f : N \times X \to X \) and satisfies (1) to (4) of definition 2.3.

Theorem 2.5. A space is semi-stratifiable if and only if it is qs-stratifiable and perfect. (For the definition of a semi-stratifiable space see [6].)

Proof. Suppose \(X \) is qs-stratifiable and perfect. Let \(U \) be an open set. Then by lemma 2.4 there is a sequence of closed sets \(\{U_n\} \) and an open covering \(\{O_n\} \) of \(X \) such that \(U = \bigcup_n (U_n \cap O_n) \). Since \(X \) is perfect,

\[
U = \bigcup_n (U_n \cap \bigcup F_n) = \bigcup U_m
\]

where each \(F_m \) is closed and \(U_m = U \cap F_m \).

Let \(U \) and \(V \) be open sets. There correspond two sequences of closed sets \(\{U_n\} \), \(\{V_n\} \) respectively such that \(U_n \subseteq V_n \) for each \(n \). It follows that \(U_m \subseteq V_m \) since \((U_n \cap F_m) \subseteq (V_n \cap F_m) \). Hence \(X \) is semi-stratifiable. The converse is evident by Theorem 1.2. of [6].

If a space \(X \) is first countable, there is a mapping \(h : N \times X \to P(X) \) such that \(\{h(n, x) | n \in \mathbb{N}\} \) is a decreasing local basis. Moreover if the space \(X \) is qs-stratifiable by the mapping \(f \), then \(\{g(n, x) | n \in \mathbb{N}\} \) is clearly a local basis of \(X \) where

\[
g(n, x) = f(n, x) \cap h(n, x).
\]

The mapping \(g \) also satisfies all conditions of definition 2.3. Thus we know that a first countable qs-stratifiable space is qs-developable.

3. \(M_i \)-spaces \((i=1, 2, 3)\) vs. qs-developable spaces.

Let \(\gamma \) be a collection of subsets of a space. For every subclass \(\gamma' \) of \(\gamma \) if

\[
\text{cl}(\bigcup \{C \in \gamma' : C \in \gamma\}) = \bigcup \text{cl}(C),
\]

then \(\gamma \) is said to be closure preserving. A space is closure preserving qs-developable if each \(\gamma_n \) is closure preserving where \(\gamma = (\gamma_1, \gamma_2, \ldots) \) is a qs-development for \(X \).

A regular space \(X \) is said to be an \(M_i \)-space if \(X \) has a \(\sigma \)-closure preserving basis. An \(M_2 \)-space is a regular space which has a \(\sigma \)-closure preserving quasi-basis [5].

Definition 3.1. If \(\gamma \) and \(\delta \) are collections of subsets of \(X \), we say that \(\gamma \) is cushioned in \(\delta \) if there exists a mapping \(D : \gamma \to \delta \) such that

\[
\text{cl}(\bigcup \{C \in \gamma' : C \in \gamma\}) = \bigcup \text{cl}(D(C))
\]

for every subclass \(\gamma' \) of \(\gamma \).

A collection of ordered pairs of sets \(P \) is called a pair basis if

\[
P = \{P = (P_1, P_2) | P_i \subseteq X\}
\]

such that
On quasi-semidevelopable spaces

(1) \(P_1 \subset P_2 \) and \(P_1 \) is open, and
(2) for every \(x \) and for every neighborhood \(U \) of \(x \) there exists a \(P \) in \(P \) such that
\[
x \in P_1 \subset P_2 \subset U.
\]

A \(T_1 \) space \(X \) is said to be an \(M_\infty \)-space if \(X \) has a \(\sigma \)-cushioned pair basis [5].
It is well known that \(M_1 \)-space \(\rightarrow M_\infty \)-space \(\rightarrow M_3 \)-space. For the qs-developable spaces with closure preserving property we have following theorem.

Theorem 3.2. A regular and closure preserving qs-developable space is an \(M_\infty \)-space.

Proof. Let \(\gamma = (\gamma_1, \gamma_2, \ldots) \) be a qs-development for \(X \). Since each \(\gamma_n \) is closure preserving
\(B_n = \{ St(x, \gamma_n) \mid x \in X \} \) is also closure preserving.

Theorem 3.3. A regular space \(X \) has a closure preserving semi-development if and only if \(X \) has a closure preserving qs-development.

Proof. The necessity is trivial. Let \(\gamma = (\gamma_1, \gamma_2, \ldots) \) be a closure preserving qs-development for \(X \). Then \(X \) is an \(M_\infty \)-space by theorem 3.2. Since \(X \) is also an \(M_\infty \)-space,
\(X - \gamma_n^* = \bigcup U_n \) where each \(U_n \) is open. Let \(\zeta_n = \gamma_n \cup \{ U_n \} \). Then for each \(n \) and each
\(k \), \(\zeta_n \) is clearly a covering of \(X \) and is closure preserving. We show that \(\zeta = \{ \zeta_n \mid n = 1, 2, \ldots \} \) is a semi-development for \(X \). For each \(x \) and each \(n, k \) \(St(x, \zeta_n) \) is a neighborhood of \(x \). Let \(U \) be an open set containing \(x \). There exists a number \(n \) such that \(x \in St(x, \gamma_n) \subset U \). Since \(x \in \gamma_n^* \), there exists a number \(k \) such that \(x \in U_n \).
This implies that \(x \in St(x, \gamma_n) = St(x, \zeta_n) \subset U \), and completes the proof.

Example 3.4. There is a regular closure preserving semi-developable (hence qs-developable by the Theorem 3.3) space which is not metrizable.
Let \(R \) be the real line and \(Q \) be the set of rational numbers. We also use the notation \(\langle x, y \rangle \) denoting the point \((x, y) \in R \times R \) to distinguish it from \((s, t) \) which is an open interval. For \(x \in R \) put
\[
L_x = \langle x, y \rangle \mid \langle x, y \rangle \in R \times R, \ 0 < y \rangle
\]
and
\[
X = R \cup \{ L_x \mid x \in R \}.
\]
Now we define a basis for \(X \) as follows: For \(s, t \in Q \) and \(z = \langle x, w \rangle \in L_x, 0 < s < w < t \),
we put
\[
U_{x, s, t}(z) = \langle x, y \rangle \mid s < y < t \}
\]
and \(A \) to be the set of all such \(U_{x, s, t}(z) \). For \(r, s, t \in Q \) and \(z \in R, s < z < t \) and \(r > 0 \), we put
\[
V_{r, s, t}(z) = (s, t) \cup (\bigcup \{ \langle w, y \rangle \mid 0 < y < r, \ w \in (s, t) - \{ z \} \}),
\]
and \(B \) to be the set of all such \(V_{r, s, t}(z) \).
Now let \(U = A \cup B \). Then it can be easily shown that \(U \) is a \(\sigma \)-closure preserving basis.
making X to be a nonmetrizable first countable M_t-space. For $z \in R$, $s < z < t$ let
\[W_{r,s,t}(z) = (s, t) \setminus \{z\} \cup \{(x, y) | 0 < y < r\} \]
and
\[U_{s,t} = \{U_{s,t}(x) | s < w < t, x \in R \text{ and } z = \langle x, w \rangle\}, \]
\[W_{r,s,t} = \{W_{r,s,t}(x) | s < z < t \text{ and } z \in R\}. \]
Then
\[\{U_{s,t} | s, t \in Q\} \cup \{W_{r,s,t} | r, s, t \in Q\} \]
is a closure preserving qs-development for X.

Alexander introduced a class of cushioned pair semi-developable spaces [2] and proved that a space is metrizable if and only if it is T_0 and has a cushioned pair semi-development. We generalize the concept by defining a cushioned pair qs-development and show that such a space is M_t.

DEFINITION 3.5. A space is **cushioned pair qs-developable** if there exist two qs-developments γ, δ for the space such that

1. each γ_x is cushioned in δ_x and
2. for each x and each open set U containing x there exists a number n such that $x \in St(x, \gamma_x) \subseteq St(x, \delta_x) \subseteq U$.

It is not so difficult to show that if X is cushioned pair qs-developable in the sense of [8], that is, if
\[\{\text{the set of isolated points}\} \subseteq \gamma_1 \subseteq \gamma_2 \subseteq \cdots, \]
then this implies the above definition. For if x is not an isolated point and U be an open set containing x, there is an m such that $x \in St(x, \gamma_m) \subseteq U$. Since X is T_1, there must exist an $n > m$ such that $x \in St(x, \delta_n) \subseteq U$.

For this n, we have $x \in St(x, \gamma_n) \subseteq St(x, \delta_n) \subseteq U$.

From the definition cushioned pair semi-development is a cushioned pair qs-development. A cushioned pair qs-developable T_0-space is regular.

Let γ and δ be collections of subsets of a space. We define that γ is **weakly cushioned** in δ if there exists a mapping $D : \gamma \to \delta$ such that

1. $C \subseteq D(C)$ for each C in γ and
2. for each subclass $\gamma' \subseteq r$
\[\text{cl}(\cup_{c \in \gamma} C \cup \text{cl}(D(C))). \]

This is a slight generalization of the definition 3.1.

A space is defined to be **weakly cushioned pair qs-developable** if there exist two qs-development γ and δ such that

1. each γ_x is weakly cushioned in δ_x and
2. for each x and each open set U containing x there is a number n such that
On quasi-semidevelopable spaces

\[x \in \text{St}(x, \gamma_n) \subseteq \text{St}(x, \delta_n) \subseteq U. \]

It is clear that if \(X \) is cushioned pair qs-developable, then it is weakly cushioned pair qs-developable. If a space \(X \) is regular and has a closure preserving qs-development \(\gamma = (\gamma_1, \gamma_2, \ldots) \), then it has a weakly cushioned pair qs-development since \(\gamma \) is weakly cushioned in itself and is closure preserving.

Theorem 3.6. If a regular space \(X \) has a weakly cushioned pair qs-development, then it is an \(M_3 \)-space.

Proof. Let \(\gamma \) is weakly cushioned in \(\delta \) under the mapping \(D \) and \(P_n \) be a collection of ordered pairs \(P = (P_1, P_2) \) such that \(P_1 = \text{Int} \left(\text{St}(x, \gamma_n) \right) \), \(P_2 = \bigcup \text{cl}(D(C)) \) where \(C \) is a member of \(\Gamma_n \) containing \(x \). Then \(P_n \) is cushioned. It is easy to show that \(\bigcup P_n \) is a pair basis. This completes the proof.

From the above theorem we have following corollary which is a generalization of the theorem 2, 3 of [8].

Corollary 3.7. A regular cushioned pair qs-developable space is Nagata (a first countable stratifiable) space.

References

Seoul National University