1. Introduction. B. Malgrange introduced in [1] $P(D)$-related Frechet spaces to prove $P(D)\mathcal{D}^\infty F(\Omega) = \mathcal{D}^\infty F(\Omega)$ where $P(D)$ is a differential polynomial and $\mathcal{D}^\infty F(\Omega)$ is the space of distributions in Ω of finite order. The functional analytic version of $P(D)$-related Frechet spaces and its generalizations are developed in F. Treves [2]. The central result in [2] is the corollary 2 of theorem 17.2; it reads in our notations (cf.2), if the map T from E into F is such that the image of T is weakly closed in E' and T is injective, then T from G into M is an epimorphism and has a homogeneous approximation property iff L and M are T-related. In this paper we weaken the condition for T and assuming the condition for T to be presurjective we get the similar results. The methods used here clarifies the connections between presurjectivity of T and T-related Frechet spaces.

I thank the referee for revising the article.

2. Notations and Definitions. Let E and F be locally convex topological linear spaces. We further assume that F is barrelled. Let Σ be a locally convex Hausdorff topological space. Let L and M be Frechet spaces. We assume that

i) $E(F)$ is continuously imbedded in L (M resp.) and dense in L (M resp.), and

ii) L and M are continuously imbedded in Σ.

Let T be a continuous transformation from Σ into Σ such that T restricted on E (which we shall denote by T again) is a continuous transformation from E into F. We shall denote by E' the continuous dual of E and by T' the continuous transpose of T as usual. For any $f \in E'$, $|f|(x) = |f(x)|$ for every $x \in E$. For any seminorm q on F, Tq is a seminorm on E such that $Tq(x) = q(T(x))$. We shall use the following definitions.

Definition 1. A continuous map T from E into F is presurjective iff for any continuous seminorm p on E there exists a continuous seminorm q on F such that for any $g \in F'$, $Tq \leq p$ implies $|g| \leq q$.

Definition 2. L and M are T-related iff for any $g \in F'$, $Tg \in L'$ implies $g \in M'$.

Definition 3. A continuous map T from E to F is an epimorphism iff it is surjective and open.

Definition 4. The map T from L into Σ has a homogeneous approximation property iff for any x in L such that $Tx = 0$ there exists a sequence $\{x_i\}$ of the elements in E such that $Tx_i = 0$ and $\{x_i\}$ converges to x in L.

3. Theorems. Let G be the linear subspace of L consisting of those x such that $Tx \in M$. We can identify G with the subset of $L \times M$ consisting of the pairs (x, Tx), $x \in G$. We provide G with the topology induced by the product topology. Then G is a Frechet space; it is enough to prove that the set $\{(x, Tx) | x \in G\}$ is closed in $L \times M$. If $\{x_i\}$ is a sequence converging to x in L and such that Tx_i converges to y in M, since L is con
continuously imbedded in Σ, Tx_i must converge to Tx in Σ, hence $y=Tx$ since Σ is Hausdorff. We note that G is continuously imbedded in L and T from G to M is continuous.

Theorem 1. If the map T from E to F is presurjective and G and M are T-related, then $T(L) \supseteq M$.

Proof. We shall show that $T(G)=M$ from which $T(L) \supseteq M$ follows. Since $T(G) \subset M$ by definition and since G and M are Frechet, to show that $T(G)=M$, it is enough to show that the map T from G to M is presurjective (cf. [2]). Let p be a continuous seminorm on G. We may identify p with a continuous seminorm on E. Since T from E to F is presurjective, there exists q, a continuous seminorm on F such that for any $f \in F'$ $|Tf| \geq p$ implies $|f| \leq q$. Let $q'=\sup\{|f| f \in F' \text{ and } |Tf| \leq p\}$. Then q' is a continuous seminorm on F since $q' \leq q$. We note that $Tq' \leq p$, that is, for any $x \in E$ $q'(Tx) \leq p(x)$. Let $g \in F'$ such that $|g| \leq q'$. Then $|Tg| \leq p$. Therefore $Tg \in G$. Since G and M are T-related, this shows that $g \in M$. Now since M is a Frechet space, and since for any $g \in F'$ such that $|g| \leq q'$ $g \in M'$, this implies q' is a continuous seminorm on M (cf. p. 48[2]). Above arguments shows that for any continuous seminorm p on G there exists a continuous seminorm q' on M such that for any $g \in M'$ $|Tg| \leq p$ implies $|g| \leq q'$. Therefore T from G to M is presurjective and hence is an epimorphism.

Corollary. If the map T from E to F is presurjective, $T(L) \subset M$, T from L into M is continuous, and L and M are T-related, then $T(L)=M$.

Proof. We note that the space G introduced before is topologically equivalent to L. Hence our corollary follows immediately from the previous theorem.

Theorem 2. Assume that $T(E)$ is dense in F, $T(L) \supseteq M$ and the map T from L to M has a homogeneous approximation property. Then L and M are T-related.

Proof. Let $g \in F'$ be such that $Tg \in L'$. On M define a linear functional h such that for any $y \in M$ $h(y)=Tg(x)$ where $x \in L$ is such that $Tx=y$. Then $h(y)$ does not depend on x. For if $x' \in L$ is also such that $Tx'=y$, we have $T(x-x')=0$. Since T has an homogeneous approximation property, there exists a sequence $\{x_i\}$ in E converging to $x-x'$ in L and such that $Tx_i=0$ for all i. We then have $Tg(x)-Tg(x')=\lim_Tg(x_i)$ for all i. Let us go back to the space G introduced before. Since G and M are Frechet spaces, T is an open mapping from G onto M. Therefore if $y_i \to 0$ in M, there exists, for every i, $x_i \in G$ such that $x_i \to 0$ in G, a fortiori in L, and such that $Tx_i=y_i$. But then $h(y_i)=Tg(x_i) \to 0$. This proves the continuity of h. Hence $h \in M'$. Since $h(y)=Tg(x)$ for any $y \in M$, take in particular $y \in T(E) \subset F$. Then there is $x \in E$ such that $Tx=y$. This yields for any $y \in T(E)$ $h(y)=Tg(x)=g(y)$. Since $T(E)$ is dense in M, we conclude that $h=g \in M'$.

Corollary. Assume that the map T from E into F is presurjective, $T(L) \supseteq M$, and T has a homogeneous approximation property, then L and M are T-related.

Proof. Since T is presurjective, $T(E)$ is dense in F. Hence the previous theorem completes the proof.
References

Seoul National University