A NOTE ON THE ESSENTIAL NILPOTENCY

By HA-JINE KIM

An ideal L of a ring R is called essentially nilpotent if it contains a nilpotent ideal N of R which is essential in L, i.e., N has non-zero intersection with each non-zero ideal of R which is contained in L [2]. A nil right (left) ideal of a ring is called essentially right (left) nilpotent if it contains a nilpotent right (left) ideal which is essential in it. If N is an ideal of a ring R, N is called left T-nilpotent ("T" for transfinite) if, given any sequence $\{a_i\}$ of elements in N, there exists an n such that $a_0 a_1 \cdots a_{n-1} a_n = 0$. (Right T-nilpotency requires instead that $a_0 a_1 \cdots a_{n-1} a_n = 0$.) [1].

Shock proved that a nil right ideal is essentially nilpotent if and only if it contains an essential right ideal which is left T-nilpotent [3]. In this paper, we show that an ideal L is essentially nilpotent if and only if L contains a left T-nilpotent ideal which is essential in L.

REMARK 1. H. Bass' exemple (5), p. 476 of [1] shows the existence of a left T-nilpotent ideal but not right T-nilpotent. Therefore if an ideal N is left T-nilpotent, then N is not nilpotent.

REMARK 2. Using the Sasiada's example (Let R denote the ring generated over the integers by x_1, x_2, \cdots with the relation $x_i x_j = 0$ for $i \geq j$.), J. Fisher showed that essential nilpotency does not imply left T-nilpotency [2].

LEMMA. If an ideal L of R is left T-nilpotent, then L is essentially nilpotent.

Proof. In [2].

THEOREM. An ideal L of a ring is essentially nilpotent if and only if L contains a left T-nilpotent ideal which is essential in L.

Proof. Let J be a nilpotent ideal of R which is essential in essentially nilpotent ideal L. Hence J is a left T-nilpotent ideal which is essential in L.

Conversely, let J be a left T-nilpotent ideal contained in L which is essential in L. By the previous lemma, the left T-nilpotent ideal J is essentially nilpotent. Hence J contains a nilpotent ideal N which is essential in J. N is
also essential in L. Hence L is essentially nilpotent.

References

Ajou Institute of Technology