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Abstract

The optimal time-sequential distribution of supporting fire against enemy ground units in

combat against attacking friendly units is studied. Lanchester type models of warfare are

combined with optimal control theory in this investigation. The optimal time-sequential
fire-support policy is characterized for a specific problem. Although complete details for the
determination of the optimal policy are not given, it is conjectured, on the basis of the
theorems which were proved, that for this problem the optimal policy is to always concent-
rate all supporting fire on the same enemy unit until supporting fire must be Jifted.

]. Introduction

The problem of fire support allocation is a
problem of interest to the military tactician
and planner. In this paper, we will study the
problem of artillery fire support allocation ag-
ainst several enemy ground units. The problem
is to determine an optimal time-sequential
policy for distributing available fire support
without wasting it. By wasting of fire support
we mean overkilling, i.e., the destruction of
enemy forces that does not contribute to the
attainment of the friendly objective. Overkill
would correspond to a state variable which
represents the strength of 2 ground unit beco-
ming negative.

To determine a good allocation of fire sup-
port, one must consider the dynamic nature of
combat. Lanchester-type models of warfare(see
[15]) have been developed to provide insights
into the dynamics of combat. With such a dy-
namical system model and considering that fire
support decisions are made over a period of

time, one is led to an optimal - control/diffe_
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rential-game formulation for the determination
of optimal time-sequential fire support alloca-
tion.

Such a time-sequential combat optimization
problems may be cast as either optimal control
problems or differential game, depending on
whether or not both sides are modeled as rat-
jonal decision makers. In the exploratory work
at hand, we will consider the optimization of
combat decision by only one of the combata.
nts. This leads to consideration of an optima1
conirol problem. Such a problem has been
referred to as a Lanchester-type optimal cont-
rol problem by Taylor{see [14]).

The development of solutions to Lanchester-
type optimal control problems is not routine
matter due to several technical difficulties.
Due to physical considerations force levels can
not become negative, and we must introduce
state-variable inequality constraints (SVIC's),
j.e., no state variable (force level) can be all-
owed to be negative. All Lanchester-type dy-
nanic tactical allocation problems have SVIC's.
The maximum principle(in its original form}
is inadequate to solve a problem with SVIC’s,

since an extremal may contain a subarc which
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Lies on the boundary of the state space.

Another difficulty for this type of problem
is the possible presence of a singular subarc.
Consider a control problem in which, for exa-
mple, a single control variable u appears line-
arly in the Hamiltonian H. The maximum
principle fails to determine the optimal control
when 3H/3u=—o for a finite interval of time.
The corresponding trajectory is called a sing-
ular subare,

‘We will study the problem at hand in two
phases. In the #first phase we will condiser
nonsingular extremals, while in the second
phase we will consider singular extremals. One
result of the study for this problem is that
there is no nice elgorithm to determine the
optimal control for cur problem. In general,
combat optimization problems dealing with
multiple units are extremely complicated, esp-

ecially if there are some singular subarcs.

. Artillery Fire Support
Allocation Model

Consider combat between two ground forces
Red and Blue. Each side is composed of two
infantry units. Blue infantry units are being
supported by artillery fire.

We want to find the best policy for allocat-
ing Blue’s artillery fire support against Red to
achieve the maximum effectiveness. The mea-
sure of effectiveness is taken to be the ratio
of Blue infantry forces to Red at the given
time. The problem is to determine an optimal
policy by which the ratic of two infantry fo.
rces at the end of the battle can be maximi-
zed.,

The following assumptions will be made for
developing the model.

1, Each infantry wunit is only in contact
with his opposing unit.

2. The Blue infantry units are moving to
contact with the Red units and due to their
movement cause negligible attrition to the op-

posing Red forces. Furthermore, the Red de-
fensive positions are prepared and relatively
invulnerable to small arms fire during this
approach phase.

3. The defensive Red units cause attrition
to the opposing Blue units according toa “sq-
uare law” attrition process.

4, The Blue artillery delivers area fire aga-
inst the Red infantry.

For the notational convenience, the Blue
forces will be denoted as X,, and X,, (with
corresponding force levels x,;, (t) and z,L.(t))
and the Red forces as X,, and X,;(with cor-
responding force levels z;,(t) and z,,(t)).

With the above assumptions we may deve-
lop the following combat optimization model:

I LT
B TS
subject to: £y, (&) =—a,2,;(t)

Zp{t)=—c 2 {E)
E (@)= —au )z, (L)
& () = — (1 —a{t))xn(t)

(la)

maximize J=4;-

where z:;{¢); force level at time ¢
Z;;(¢): the time derivatives of state
variables x;; (2)
T: time at which the battle termin-
ates
#(#): control variable
a,,c;. attrition rate coefficients
B utilities assigned to ratio of sur-
vivors.
Since the criterion functional contains force
ratios at the terminal time, we may formulate
a problem with a state space of lower dimen-

sion by defining new state variables as

R
Then we can show that (la) is equivalent
to the following optimal control problem:
maximize J=kz,(T)+ka,(T)
subject to #,——a,tcur,
dr—=—ayteo,(l—wx, (1b)
where all constant coefficients remain same



as (la).

Let us assume that we are given the initial

conditions
. (0) =z, 2,(0)=x°,

Let us assume also that we are given a
specified time T, which is called the duration
of the combat. We will assume that the battle
will be terminated at time T under one of
the following conditons:

Condition 1 : z,(T)=2,(T)=0, for some

T<T,.

Condition 2 : T=T,.

M. Development of Necessary
Conditons of Optimality

To develop the necessary conditons for opt-
imality, iet us define the Hamiltonian for the
problem {(1b),

H(t,z,p, uw) =pi(—a,+cuz;)+
L—a+o(l—ws,); 2
£y and p, are the adjoint variables, correspon-
ding to the state variables x;, and z,, respect-
ively and, satistying the differential equations:

dpl _ oH —
_Et___.— H— —Cﬂpl

By Pontryagin’s maximum principle, we can
show that the nonsingular optimal control
will be obtained by maximizing the Hamilto-
nian over the control variable. Hence we may
observe that the extremal control is then giv-
en by

0 if 8<0
w(t)=11 if S>>0
indeterminate if S=0, (4)
where S=c.p,2,—c,p,2,.
We will call u the extremal control function
and S the switching function. The extremal
control u so defined may furnish the global
maximum, a local maximum, or only a statio-
nary values for the criterion function.

Since the Hamiltonian H is linear function

of the control variable u, if the switching fu-
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nction S becomes identically zero for some
finite interval of time, the maximum principle
fails to provide any information about the op-
timal control u. In this case all the admissible
values of u maximize the Hamiltomian; ther-
efore theory of singular extremals is required
to solve this problem. If S=8H/fx is to be
identically zero for some finite interval of time,
then all its derivatives with respect to the
time must also vanish. That is, theltrajectory
remains on a singular aubarc if and only if

_OH _d (eH\_ d» [ 8H .
0= _dt(au)_dtz(au)_
' (5
From these conditions, we will have
0= %‘ =8=c¢; Pz~ P2, (6)
02%—( 331: )=§=“4101P1+02¢'2P3 )
b= d‘fz (é—af)=§:¢1012P13_ﬂ2€23.?2(1—u)
€)]
From (6)—{(8), we have
=St = 1))

ete
defining s, the singular control.

The generalized Legendre-Clebsch conditon
is necessary for singular subarc to yield a ma-
ximum return{see {8]).

The condition will be given

g e (]

For the problem at hand,
g [ 4 7 aH
W[ de? ( ou )]
=ac?Py a2 p. 0,
since ;2> 0. Therefore, the Legendre-Clebsch
condition is satisfied,

For the singular subarc $=S=0 ; it follows
that

xl(t) 1
2@ e o

we will refer to the surfaces S, defined by
(10), and S,, defined by (7} as singulr sur-
faces. Singular arcs lie in these. The surface



82

defined by
S=¢, P13, — €2P222=0 an
is called the switching surface.

V. Synthesis of Extremal Centrol

A. Synthesizing Function

Let X be the Euciidean space on which the
state variables x and their associated adjoint
variables p are defined, and U be the Euclid-
ean space for control variables. Suppose we
can find a real valued function g: X—U such
that 2=F(z,g(x,p)) determines all the extre-
mal trajectories from initial to terminal time.
Then the optimal control function may be
explicitly determined by the function of state
variables and adjoint variables such that the
optimal control at each time depends only on
the points of the space at which the state
variables and the adoint variables are located
at the given time. The function g(z,p) will
be called a synthesizing function and explicit
determination of such a function is called the
synthesis of the extremal control, and the ex_
plicit determination of the time history of the
extremal trajectory is called synthesis of extr-
emal trajectory.

Unfortunately, an existence theorem for the
synthesizing function has not been proved.
Furthermore, there is no general algorithm
for the problem of finding such a function. If
the set of terminal values for the state varia-
Bles is not explicitly specified, it may be extr-
emely difficult to find a synthesizing function.
The determination of the synthesizing function
must be done on a case-by-case basis. In the
problem at hand the terminal state is not spe-
cified. However, we know that the control
depends upon the state variable z and the
adjoint variable p, and it will be determined
by the maximum principle when {(z,p) does
not belong to the singular surface.

The difficalty is that x is only known init-

jally and p is known only at the problem’s
end until we have managed to match £ and
# with the maximum principle to get a sofu-
tion.

However we may analyze the behavior of
the switching function, which is a type of
synthesizing function. Although it involves
both state and adjoint variables we can infer
itz behavior as a function of time, along an

extremal, to establish several results.

B. Synthesis of Control for a Time
Interval During Which the Control
is Constant

For synthesizing extremal trajectory, let us
consider the constant optmial control from the
beginning to the end of the battle. Then from
the dfferential equation{1h), we will have the

following solutions.

For u=1;

() =max [(3:1"— —:11—:58"’—1- :‘ , U}

T, () =max {z.°— at, 0} (12a)

2@ =k ™0

)=k (12h)

S =c. ke T0—c,k,x, {12¢)

S(t)z — a0 ke T2 agacok, {12d)

S(t) =ac 26970 (12¢)
For u#=0.

2,(¢) =max {,*— &, 0}

xz(t):max{(:rz"— j’: )e‘f‘—i——:--z—, D}

4

(13a)
2=k,
RO XSl (13b)
SCE) == ¢ By 1, — ok TP (13c)
S(6) = — aye1fey - @acok g™ T0 (13d)
S(8) = — 0,7k TD (13€)

.
For u=s= o _:a

A a
z,(f)=max {(xl"— —‘;_)ga:.‘. %__’ 0}

z,(#)=max {(xg"— ‘Lz

s
(14a)



Py =T

D () =k T0 (14b)
S@® = (crk1x—Ckyx,) =T 0 (14c)
S= (‘_élflkl_ﬂaczkz)e“”_ﬂ (14d}

S(t) = ‘E“_t:Tzﬂ“(T_') (a.c 2k —@staks)
(14e)
where

—_ €€z
cte:

We will use the above results to determine

the optimal policy for more general cases.

C. Development of Theorems on the
Characterization of an Optimal Policy

By analyzing the behavior of switching fun-
ction, we may establish the following theore-
ms.

THEOREM 1

Let E be an maximizing extremal which
contains no singular subarc for the optimal
control problem given by (1b). Then there is
at most one switching in E.

Proof:

By hypothesis, since E does not contain a
singular subarc, the optimal control can be
determined by Pontryagin’s maximum princi-
ple, except possibly at one point, as we shall
see. We have got the switching function from
the Hamiltonian by means of the maximum
principle,

S =e\prxy— 2t
Then its derivative is

S(r):azcﬂpz_a1cxpl
and S =aczthu—aec?p.(1—w).
It follows that

S>>0 i u=1

S <0 if u=0,
Since the trajectory does not lie on singular
subare, we will have either u=1 or u«=—0 at
t=0, Let us consider the case =1 at £=0;
a similar discussion wilt hold if #=0 initially.
Since u=1 at t=0, SQ)>0.

1. Let us consider first the cases in which
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S(0)>>0. There are two sub-cases, accordingly
as S(0)=0 or $(0)<0,
Case 1: S(06)>>0 and S(0)>0. .

Since S(0)>>0, we must choose u=1 at the
beginning of the game. From(12h), p,(&)=
BT, p,(1y=k, Therefore, () is de-
creasing function of ¢ and p.() is constant.
Hence S(0)>>0 imples S$(0)>>0 and SG)>0,
for all £2»0. Therefore S(z) is monotone inc-
reasing function, and consequently we will
have S(&>0 for t=[0, T] Hence no switch-
ign occurs.

Case 2: S(0)>>0 and (0)S<0.
From eguation({12¢), S must have the form
D{t)y=—Ae o+ B (15)
in which A and B are positive, so long as u
=], But if § becomes negative & must beco-
me 0 and S will have a different form.

Let T be the value of ¢ for which D=0.
Consider also &: § may become zero at some
value ;<7 or 8(¢t) may be greater than or
equal to zero. There are three subcase.

Subease i

It may be that $>0 for all £<Cz, In this
case S>0 for all 2, since $>0 when u=1.
Hence no switching occurs.

Subcase ii

It may be that S becomes zero at some time
t,<7 and $(2,)<C0. Then there is switching
at ¢=t,. From the facts that S,)=0, S()
<0 and §<0 when x=0, it follows that 2,
is switching point, and that S<70 for all £>¢.

Subease iii :

It may be that #, in case ii coincides with
t, so that S@#)=0 and $(#,)=0 for some z,
<T. Then the maximum principle does not
determine the control at time 2;. If we choose
u=1 at t=¢t,, when §(#,)>>0, If follows that
S(£), S{&) are positive for £2>>2; and there is
no switching. If we choose w—0 at =i,
then by the above arguments, S(¢) <0 for#> '
¢, and there is one switching.

2. It may be that S(0)=0. I S()>0.
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then S(2) is always positive. If ${0)<0 then
SE <0 for £>0 and 4=0. Finally if $(0)=0
then we may choose «(0) arbitrarily. If we
choose #=1 initially then S>>0 for £0 by
argument given in case 2-iii and there is no
switching. Similarly, if we choose #(0)=0, S
rematns negative.

This takes care of all extremals which do
not have a singular arc; a nonsingular extre-
mal has at most one switching point.

Furtheremore, we may develop the follow-
ing theorems which will provide the informa-
tions of extremal control. We will not prove
these theorems in this paper. The interested
reader may refer author’s paper(see [10J)

THEOREM 2

If E contains a singular subarc, then there
are at most two switchings.

THEOREM 3

Consider a path E,, defined by the constant
control =1, 0<¢t<¢;, and u=0, £, <z<T,
so that E,, has one switching and no singutar
subarc. Let J,, be the associated criterion
function. If x,°>>a,/c, and ,°22a,T, then
there is no maximizing extremal of the form
E,,. By symretry, there cannot be one of
the form E,, in which z,°>>a,/¢, and z,9>
a,T. That is, a properly chosen constant
control is always better than a mixed policy
of this type.

THEOREM 4

All nonsingulr controls which maximize the
criterion function for this problem have the

form u=1 or else u=0.

V. Determination of the Optimal
Control

A, Sufficient Conditions for
Optimality
As is well known the maximum principle
only provides necessary conditions of optima-
lity. Second order sufficient conditions(see [11)
are impractical to apply to the problem af

hand. Mangasarian’s sufficient conditions (see
{91, unfortunately do not apply to the problem
at hand, since the right.hand sides of the dif-
ferential equation for the problem are not con-
cave functions of the state and control varia-
bles. We will develop some theorems to dete-
rmine the optimal conirol for this particular
problem.

B. Determination of Optimal Control
in Terms of Initial Conditions and
Terminal Conditons

In general we cannot determine the optimal
control without some computation and compa-
rison. However, in some cases we can establ-
ish its form easily. In this section two theor-
ems are developed. The first one establishes a
sufficient conditon for some nonsingular ares
to he optimal. The second theorem establishes
a necessary condition: An opiim iz ing arc
never has a terminal singular subare.
THEOREM 5

If E does not contain a singular subarc, and

1}
if 2,>-% and G<T<min{ z L,
3

a; €3

—= -‘-—}, then constant control #=1 is the

optimal control. By symmetry, if xgz%— and

E

0<T<min{i—‘:, 1 ln&k-’f—xz—:} , then the

() Ry

constant control #=0 is the optimal control.
Proof:

See(10].
THEOREM s

A maximizing control does not have a sin-
gular subarc ending at 1=7T.
Proof:

See[10).

Thus we see that if a trajectory ends with
a singular subarc at the end of the battle, it
cannot be an optimal trajectory.

From studying this problem we feel that
following result is true. If so it would reduce
this particular problem to the two cases for



the optimum, ie, =0 or =#=1, We were
unable to prove this result or to find a counter
example.
THEOREM 7

A maximizing arc never has a singular su-
barc nor a corner; that is the optimal control
is always either #=1 or =0, depending on
the given conditions,

1. Discussion

Considering the theorems given above, we
see that if an extremal does not contain a si-
ngular subarc, the optimal control « is (a)
constant for all +=(¢,T) and is (b) either 0
or 1. Which of these policies is better may be
determined by direct computaion and compar-
ison of values of the criterion functional using
the attrition rate coefficients and the initial
conditons. Thus, we see that in this case the
optimal time-sequential fire-support policy for
Blue is to concentrate all his artillery resources
on one of the Red units for the entire durat
ion of battle. It should be pointed out that
even if an extremal contains a singulr subare,
Blue’s artillery fire will (optimaily) still be
concenirated on one of the Red units at the
end of battle. This is because an optimal fire-
support policy has been characterized as not
terminating with a singular subare. _

We have not been able to show which po-
licy is optimal when the trajectory contains a
singular subarc for some period of time before
the end of the problem. Thus, the complete
explicit determination of the optimal fire sup-
port_policy was not accomplished. However,
the basis has been given for doing this in the
future.

It should be pointed out that the insights
gained into optimal fire-support policies obt
ained from the model (1) are no more valid
than the model itself. Thus the reader should
be cautioned that the optimal fire-support policy
determined here may only apply to the prob.
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lem(1). As discussed by Taylor(see [14)), a
combat optimization problem consists of the
following three parts:(1) decision criteria, (2)
model of the planning herizon (e.g. conflict
termination condition), and(3) model of com-
bat dynafnics, the optimal fire-support policy
may well be different from that given here.

V. Conclusions

For the problem considered in this paper,
the optimal fire-support policy is piecewise
constant with at most two switches. H one
never divides fire between the two enemy units
(singular control), then the optimal policy is
constant and either 0 or 1(i.e., concentrate all
fire on one of the enemy units). Although
complete details could not be worked out, it
is conjectured that this is the optimal policy
(i.e., always concentrate all supporting fire on
one of the enemy units). The reader should
be cautioned that these conclusions may only
apply to the specific fire support problem stu-
died here.

BIBLIOGRAPHY

{1] Bryson A.E. and Ho Y.C., Applied Optimal
Control, Blaisdell Publishing Co., Waltham,
Massachusetts, 1969,

[2] Ewing G.M., Calculus of Variations with
Applications, W.E, Norton and Co. Inc., New
York, 1969,

(3] Faulkner F.D., Optimum  Ship Routing,
Naval Pastgraduate School, 1962,

{4] Issacs R., Differential Games, John Wiley
and Sons, Inc., New York, 1965.

(5] Jacobson D.H. and Speyer J.L., “Necessary
and Sufficient Conditions for Optimelity for
Singular Control Proble,” J. Math, Anal. Appl.
34, 239-266, 1871.

(6] Jacobson, D.H. and Lele, M.M. “Necessary
Condition of Optimality for Contral Problems
-with State-Variable Inequality Constraints,” J.
Mathn, Aal. App. 35,255-284, 1971.

{7] Johmson C.D. and Gibson, J.E. “Singular
Solution in Problems of Optimal Controi,”



2

IEEE, Transactions on Automatic Control, 4-
15, 1963,

787 Kelley. H.J. Kopp. R.E. and Moyer. H.G.
“Singular Extremals,™ in Topics in Optimiza-
tion. G. Leitman {ed.>. Academic Press, New
York. 1967, pp. 63-101.

"o Mangasarian, O.L. “Sufficient Conditions for
the Optimal Control of Nonlinear Systems,” J.
SIAM Control Voi. 4, No. 1.1966.

T10> Oh, M. Optimal time-sequential Distribution
of Supporting Fire. Naval Postgraduate Sch-
ool. 1574,

“11Y Pontrvagin. L.S. Boltvanskii, V.G. Gamkr-
elidze. R.V. and Mischemo, E.F. The Mat-
hematical Theory of Optimal Processes, John
Wiley and Sons. Inc.. New York, 1962.

{12] Pugh G.E. and Mayberry, J.P. Analysis of
General Purpose Forces Procurements, Lambda
Corporation, paper 59, August 1971.

(133 Taylor, J.G. “Target Selection in Lanchester
Combat: Linear-Law Attrition Process,” Naval
Research Logistics Quarterly, Vol. 20, No.
4, pp. 673-697, 1973.

(141 Taylor, J.G. “Survey on the Optimal Control
of Lanchester-Type Attrition Processes,” to
appear in Proceedings of The Conference on
the State-of-the-Art of Mathematics in
Combat Model.

(151 Weiss, H.K. “Lanchester-Tvpe Models of
War fare,” Proceedings of the First Internati
onal Conference Operations Research, Oxtord
September 1957,



