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Abstract

Three approximation methods for generating outcomes on Poisson random variables are

discussed. A comparison is made to determine which method requires the least computer

execution time and to determine which is the most robust approximation. Results of the

comparison study suggest the method to choose for the generating procedure depends on the

mean value of Poisson random variable which is being generated,

I. Introduction

It is frequently desired to generate Poisson
random variates in simulations. There are sta-
ndard exact methods for doing this; the prob.
lem arises when a computer is used to gener-
ate the Poisson random number which has a
large mean, For example, generating one ran-
dom number such as 105 from a Poisson dist-
ribution with mean 100 needs at least 105
calls to a pseudo-random number {(uniform?o,
1) generator. Computer time requirements
become important cost factors when consider-
ing various methods for generating random
numbers,

The cobjective of this paper is to examine
several approximated ways of generating Pois-
son random variates and to determine the
method which gives minimum execution time
and small mean squared deviation according to
the Poisson mean value. The mean value is
the only parameter in the distribution. Comp-
arison statistics to determine the best appro-
ximation to the Poisson distribution are the

cumulative probability, mean squared deviation
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and Kolmogorov-Smirnov test. Finally a ccm
posite generating procedure according to the
mean value is suggested.
The following notation is used in this study
U: denotes a uniform(0, 1) random variable
N denotes a Poisson random variable where
mean is m;
Z denotes a random variable {rom a standard
normal distribution.

I. Generation of Poisson- Distrib-
uted Variates

A, the Poisson Distribution
A random variable N with integer values

has a Poisson distribution if

Prob {N=n}=—"""" n=0,1,2...

In order to generate a Poisson random number
N from a Poisson distribution with mean m,
the following algorithm is presented. It is the
standard exact method for generating these
variates.

Let U,i=1,2,-', be independent uniform
70,1) random variate. The Poisson variate,

N, is computed as:
0 if Ule™; i=1,2,3,-

N=t § 1 User>H U
=1 i=I
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where N is distributed as a Poisson with mean

m, ie., Prob {N=n}=e"m"/nl
Equivalently, since the logarithm is a mon-

otone transformation, we have

0 if In (U)<—m,

N: » w1
n i T WmU)>-m2L =0

Letting E;=—In(U)
0 if E.>m
N:l

] LEo
n if 2 Es<mSZ}1Es
i=1l =

where the E, is exponentially distributed var-
iate with mean 1.

If n multiplications of uniform(0, 1) random
numbers is strictly greater than e™= a_nd if n
+1 multiptications of uniform(0,1) random
number is equal to or less than e™* then x is
the Poisson random number. Generally, gene-
rating one random number from Poisson pro-
cess with parameter s requires on the average
m-+1 uniform?0, 1) rendom numbers. This is
because the number generated is n+1. When
m is large it is clear that generating Poisson
random numbers with the above method, alth-
ough it is exact, takes a lot of computer time
and this method may be uneconomical. In
addition, the large number of multiplications
can produce serious precision problems on a
digital computer.

B. Approximations for Poisson Variates

1, Normal Approeximation

In a Poisson process with parameter A it is
necessary to generate random variables from

the Poisson distribution with parameter(mean)

m. Now look at counts in (0,x), where z .

satisfies Ax=s. The central limit theorem says
that as m goes to positive infinity, (or when
« goes to the infinity in Poisson process with
fixed 1), then N, which has mean m and
variamce m, is such that (N40.5—m)/m'/? is
approximately distributed as a standard normal
random variable. Denote a random variable
from a unit normal distribution by Z. So N

is distributed approximately as m*Z+4+m—0.5
In order to generate Poisson random numbers
from the normal distribution, first generate
Z; then let

0 if m2Z4+m—0.5<1
[m2Z+m—0,5] otherwise
where [a] denotes the greatest integer less

than or equal to a. N is then the approxim-
ated Potsson random variable.

2. Square Root Transformation of Poi.

sson Distribution

If Nis a Poisson random variable with
mean m then Y=+«/NF3/8 is approximately
distributed as a normal distribution with mean
m*? and variance 1/4. This result is due to
Bartlett [97.

This method is derived as follows: let Y=
VNFC~N(u,0%) where C is a non-negative
constant. Let ¢=N—m and m’=m+C. Define
coefficients for s=1,2,3,--+ by

et 1 (=D e (=) (251 3)
A= 27es]

Then for any t>>—m’ we have a Taylor series

expansion.

Y= Vi {14 A4

LA

=1
=D Aus(5) T} R
If £0, we see at once |R,|<CAg#/(m")1/
converges and is bounded [4]. We note now
that the moments of ¢ are u,=0, g.=m, f

=m, p,=3m,+m, -, which give
1 3—8C
Ver (Y)NT(H- 8m +
32C2—52C+17 )
32m? ’
so that when C=3/8, Var(Y)~(1-+1/16m%)

/4. Also

1, 24C-7
EY)~Jm+C— gmit | 128mt

Let XNR=+/N+3/8 Then XNR is approx-
imately normally distributed with mean %

and variance 1/4.



7= XNR—vm+3/8
1/2 ’

XNR=Z+ Vm T8,

| JNFIE= L4 VmEae,
thus set

0 i{E+ vmTER)-3/8<1

[(Z+vmTar)—3/s8] otherwise
N is then the approximated Poisson variate,
We now need to calculate the probability
distribution of N obtained in this way from
the square root transformation. We want the
probability that
n—1+3/8< (XNR)*<n+3/8
if we divide by the variance 1/4 we get
4(n—1+3/8) <4(XNR)2<4(n+3/8)
Note that 4.(XNR)? is distributed as a non-
central y? distribution with 1 degree of free-

dom. The non-central y? density is
I il e
fx(x)= 2V E Vox [ +e ]
Thus if p=m'?, #2=(1/2)%, then
e V=tmi )
— [e—{RIAMIT
fx(z)= VT Vom Le
S+ glYRILDST

and

=+3/8

Prob(X=my~f 7 fx(z)dz
anax

This7allows us to evaluate directly how well
the "distribution of N approximates the distri-
bution of a Poisson variate with parameter s,

Note that since in the LLRANDOM pack-
age it fakes the same amount of time to gen-
erate 5 uniform random variables as it takes
to generate a normal random variable, the
procedures will be competitive timewise once
m is much greater than 5,

3, Cube Root Transformation of Poisson

Distribution

If Nis a Poisson random variable with

mean m then Y= ¥N—]/24 is approximately
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distributed as a normal distribution with mean
m'? and variance 1/9 ¥m when NZ>-1. This
comes from the following derivation which s
essentially the same procedure as for the squ-
are root transformation. Suppose Y= ¥NI-C
is distributed as N(g,0%), Let z=N—m and
m’=m+C. Define coefficients for s=1,2,3, -+
by

( 1)'“1 {(—2N—5)(—8)---(4—3s)

3e5!

For any ¢>>—m’ we have the Taylor series

a2
s

+(-17 an(E b 4R,
f £>0, we see at once that |R.|<at./(m")
153 converges. Therefore,
Fo(14057) o1
_(I_t!_m_)_(%)

001, |2} <m’

expansion

Y=Y {l+arr

+a3(

R,=

Ry = (14 - (e —

+(=1)" @ (‘,%)'_1}

L@;;)i’:é (—1y* a‘(

converges and is bounded.
We note now that the moments of t are
=0, f=m, t=m, g=03m+tm, -, giving

us

and
Var (D= =
1, 2mim ...}_ 1
81 (m’) Y
1 /4
g (27 Ct 6z )
It C= 24 then
Var(Y)=——5— 9‘{__
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Let
YNR= ¥N—-1724 N =1
7— YNR— ¥m 11724
1
3ym

YNR= ¥m+1/24+(1/3¥m)Z
YN—1/24= ¥m+1/24+(1/3¥m)2,
Thus set

0 if{ YmT 1A+
N= YmZ )<

[ vzt vmz) )+
otherwise

N is now the approximated Poisson variate.

. Evalunation of the
Methods

Generally, generating Poisson random num-
ber from the exact method is known to take
a long execution time, since one generated
random number “»” requires on the average
n multiplications of uniform (0,1) random
numbers. Therefore, generating Poisson varia-
bles with the exact method {which gives the
hetter accuracy) is good for a2 small mean, ,
while the approximation methods, which take
shorter execution time but with less accuracy,
should be used for large m. Here we need a
trade-off between execution time and aocmzfacy
to choose the generation method according to
the mean value of the Poisson distribution.

The comparison statistics show how closely
the methods approximate the original Poisson
distribution. In the Kolmogorov-Smirnov test,
all approximations are accepted at significance
level @=.05, From the comparison of the
empirical probability distributions and the mean
squared deviations from the exact distribution,
the optimal generation procedure based on the
mean value, m, is as follows:

Method Mean(m)
1. exact Poisson distribution if 0<Cm<C20
2. square root transformation if 20<m=<100

3. normal approximation if m>100.

The cube root transformation should not be
adopted because it is far less accurate compa-
red to the square root transformation and the
normal approximation. The following tables
and figures show the comparison statistics of
the three approximations versus the exact Po-
isson distribution.

Table | assesses the accuracy of the normal,
square root, and cube root approximations to
the exact Poisson distribution at selected poi-
nts. The mean squared deviation is defined
as:

1 E
=T BB
where

P’; is the cumulative distributed probability

of the approximating distribution;

F, is the cumulative distributed probability

of the exact Poisson distribution; and

k is the sample size,

Table I is 2 summary of a2 comparison of
the empirical distributions prodaced by the
three approximation methads to the exact Po-
isson distribution by means of the one sample
Kolmogorov-Smirnov test, The null hypothesis
is that the approximated distributions are Poi-
sson against the alternative that they are not
Poisson.

Finally, Tablell analyzes the sensitivity of
the square root transformation to the constant
C. In the derivation of the square root trans-
formation, C was chosen as 3/8, Different
constants were used in order to find the most
robust constant to use, i.e., the constant which
vielded the smallest mean squared deviation
from the exact Poisson. The value C=13/18
was found to be the most robust by the sen-
sitivity analysis of mean squared deviation and
poisson mean in the range of m from 20 to
100. Note that this value of C was used in
the approximation when making the compar-
isons with the other methods.
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Tehle [. Accuracy of the Normal, Square Root, and Cube Root Approximations to
the Exact Poisson Distribution.
; P(Z(my i)
Poisson mean, m | Observed Valve, n
' Square Root Trans-{ Eube Root
Exact Normal Approx formation C=13/18| Transformation
9 0. 08422 D. 07301 0. 0771% 0, 10491
E 3 0. 14037 0. 1193% 0. 14051 0. 184%1
é 0. 14422 D. 16034 0, 14614 0, 16681
10 0. 04351 {. 04485 0. D4704 0. 09045
15 14 0. 10244 0. 09937 . 10288 0. 05512
18 . 070462 D. 07422 0. 07073 0, 06348
14 0. 03874 0. 03433 0. 03746 0. 08819
20 19 0, 08884 0. 08483 0. 08891 0. 08726
22 Q. 07692 0. DBGS0 0, 07672 0. 05755
36 0. 05394 0. 05151 0. 05409 0. 02552
40 39 0. Q4295 0. 06223 0. 06307 0. D&336
42 0, 05850 0. 05995 0. 05841 0. 05675
85 0. (03940 0. 03210 0, 03953 D. 004462
61 1 59 0. 05019 0. 04999 0. 05020 0. 04973
i 82 0. 04407 0. D4402 0. 04402 0. 03289
a2 87 0. 03484 0. 03649 0. 03483 0. 0380
89 0. 03145 0, 03243 0, 03149 0, 03991
24 0. 03775 0. 03805 } 0. 03759 D. 0285
90 97 0. 03112 0.03182 ‘ 0, 03098 0. 0435
93 0. 03223 0. 03241 0. 3217 0. 0410
100 99 0. 03997 0. 03980 0. 03994 0. 03605
112 0. 02881 0.02847 0. 02866 0. 03627
120 118 0. 03477 0. 03438 0, 03442 0. 00130
Table 1. One Sample Kolmogorov-Smirnov Test.
Poisson Sample MAX|F()—F(x0 |
, Size Y Square Root Trans-| Cube Root Trans- | Critical Valus, ot .
mean, . m a Normal Approx. 1cmation C=13/18formation C=1/24 a=. 05 Accept or Reject
10 19| o021 | 0.010 | 0. 092 0.312 \ Accept
30 32 0.012 | 0.006 | 0. 052 0. 240 ‘ Accept
50 40 o009 |  0.008 | o040 0.215 Accept
_?O 47 Q. o8 i 0. 004 ‘ 0. 034 0.198 Accapt
90 52 | 0.008 ‘ 0. 005 ' 0.030 ‘ 0. 189 Accopt
Table E. Sensitivity of the Bquare Root Transformntlon to the Constant C for Poission
Distribution with Means m—20 and m=
\/'1.7" . 5/9 [ 0.014 0. 005
c Mean Absclute Deviation k——lhzl(P — P 7 /ui 0.014 0. 005
poi —0 poi Mean—80 1]/181’ Q. 011 0. 004
pisson Mean— cisson Mean— 23 /36;1 0. 009 0. 004
ase 0,019 0. 009 8/12 0. 007 0. 003
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*13/18 0. 006 0. 002
/12 0. 007 0.003
5/6 f 0.011 0. 004

* optimal constant for C.
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