Abstract
An improved procedure for the rapid purification of glucose-6-phosphate dehydrogenase from extracts of Saccharomyces cerevisiae was developed by using affinity chromatography. Among six affinty media tested, NADP$^{+}$-agarose and Affi-gel Blue were more effective than others (i.e., Affi-gel Red, AMP-agarose, ATP-agarose, and NAD$^{+}$-agarose). Conditions to desorb the enzyme bound to the affinity media were examined to increase the purity as well as yield. The best result was obtained when the column was developed with a linear gradient of KCl (0-1.0M). In case of Affi-gel Blue, introduction of NAD$^{+}$ (15mM) washing step prior to the salt gradient was most effective to remove NAD$^{+}$-binding proteins. For a large scale preparation of G-6-P dehydrogenase higher recovery was obtained by Affi-gel Blue than NADP$^{+}$-agarose, however, the purity of the enzyme was decreased by 10 times if the former was used as the affinity medium. The capacity of Affi-gel Blue for G-6-P dehydrogenase was found to be 5 times higher than that of NADP$^{+}$-agarose. Furthermore Affi-gel Blue could be reused repeatedly and its preparation is relatively easier and less expensive than NADP$^{+}$-agarose.X> +/-agarose.