FOX H-FUNCTION AND THE TEMPERATURE IN A SLAB WITH FACES AT TEMPERATURE ZERO

BY G. K. DHAWAN AND D. D. PALIWAL

1. Introduction.

In recent years a number of authors have used Meijer G-function, H-function of Fox in heat conduction problems of bar, cylinder etc [1, 5].

The H-function introduced by Fox [4, p. 408] will be represented and defined as follows:

\[
H_{p, q}^{m,n} \left[z \left\{ (a_p, e_p) \right\} \right] = \frac{1}{2\pi i} \int_L \prod_{j=m+1}^{p} \frac{\Gamma'(b_j - f_js)}{\Gamma'(1 - b_j + f_js)} \prod_{h=1}^{q} \frac{\Gamma'(1 - a_j + e_js)}{\Gamma'(a_j - e_js)} \, ds
\]

Where \(z \) is not equal to zero and an empty product is interpreted as unity; \(p, q, m \) and \(n \) are integers satisfying \(0 \leq m \leq q, 0 \leq n \leq p; \) \(e_j (j=1, 2, \cdots p), f_k (h=1, \cdots q) \) are positive numbers and \(a_j (j=1, \cdots p), b_k (h=1, \cdots q) \) are complex numbers. \(L \) is the path of integration separating the increasing and decreasing sequences of the poles of the integrand. The parameters \(\{(a_p, e_p)\} \) represent \((a_1, e_1) \cdots (a_p, e_p) \). These assumptions for the H-function will be adhered to throughout this paper.

As an example of the application of H-function of Fox in applied mathematics, we shall consider the problem of determining the temperature in a slab of homogeneous material bounded by the planes \(x=0 \) and \(x=\pi \) having an initial temperature \(u=f(x) \), varying only with the distances from the faces and with its two faces kept at zero temperature.

The formula for the temperature \(u \) at any instant and at all points of the slab is to be determined. In the problem it is clear that the temperature function is of the variables \(x \) and \(t \) only. Hence at each interior point this function \(u(x, t) \) must satisfy the heat equation for one dimensional form.

\[
\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial x^2} (0<x<\pi, \ t>0)
\]

In addition, it must satisfy the conditions.

\[
u(x, +0, t) = 0
\]

\[
u(x, -0, t) = 0 \quad (t>0)
\]

\[
u(x, +0) = f(x) \quad (0<x<\pi)
\]

The boundary value problem (1.2) – (1.4) is also the problem of temperatures in a right prism or cylinder whose length is \(\pi \) (taken so for conveniences in the computation), provided its later surface is insulated. Its ends \(x=0 \) and \(x=\pi \) are held at temper-
nature zero and its initial temperature is \(f(x) \).

In section 2 of this paper, we have evaluated an integral involving Fox \(H \)-function which is required in the proof of subsequent section.

Here \(a_p \) denotes \(a_1, \ldots, a_p \), \(\partial \) is positive integer and the symbol \(\mathcal{D}(\partial, a) \) represents the set of parameter \(\frac{a}{\partial}, \frac{a+1}{\partial}, \ldots, \frac{a+\partial-1}{\partial} \).

In this paper we shall consider.

\[
(1.5) \quad f(x) = (\sin \frac{x}{2})^{2n-\beta-1} (\cos \frac{x}{2})^{\beta-1} H_{p, q}^{m, n} \left[z \left(\tan \frac{x}{2} \right)^{2z} \right] \frac{\{(a_p, e_p)\}}{\{(b_q, f_q)\}}
\]

2. The integral.

\[
(2.1) \quad \int_0^\pi \sin \theta \left(\sin \frac{\theta}{2} \right)^{2n-\beta-1} (\cos \frac{\theta}{2})^{\beta-1} H_{p, q}^{m, n} \left[z \left(\tan \frac{\theta}{2} \right)^{2z} \right] \frac{\{(a_p, e_p)\}}{\{(b_q, f_q)\}} d\theta
\]

\[
= \frac{\Gamma(2n)}{(2\pi)^{2n-\beta}} H_{\frac{2n}{2}, \frac{\beta}{2}+rac{\beta}{2}} \left[z \left(\tan \frac{\theta}{2} \right)^{2z} \right] \frac{\mathcal{D}(\partial, 1+\beta-2n)}{\mathcal{D}(2\partial, \beta)} \frac{(a_p, e_p), \mathcal{D}(\partial, 2+\beta-2n)}{(b_q, f_q)}
\]

where

\[
\phi = \sum_{j=1}^{n} e_j - \frac{\xi}{2n-\sum_{j=1}^{n} e_j + \frac{\xi}{2n}}, \quad |\arg z| < \phi \cdot \frac{\pi}{2}
\]

and \(2n > \text{Re}(\beta) > 0, n = 1, 2, 3, \ldots \)

Proof. To establish (2.1) express the \(H \)-function as a Mellin Barnes type integral [4, p. 408] and interchange the order of integration, which is justified due to the absolute convergence of the integrals involved in the process, we have

\[
\frac{1}{2\pi i} \int_L \left[\prod_{j=1}^{m} \Gamma(b_j - f_j) \right] \left[\prod_{j=1}^{n} \Gamma(1 - a_j + e_j) \right] \frac{d\zeta}{\zeta}
\]

\[
\int_0^\pi \sin \theta \left(\sin \frac{\theta}{2} \right)^{2n+2\beta-\beta-1} (\cos \frac{\theta}{2})^{\beta-2\beta-1} d\theta
\]

Now evaluating the inner integral with the help of the modified form of the formula [6] namely.

\[
\int_0^\pi \sin \theta \left(\sin \frac{\theta}{2} \right)^{2n-\beta-1} (\cos \frac{\theta}{2})^{\beta-1} d\theta = \frac{2^{2n-\beta-1} \Gamma(\pi) \Gamma(\frac{2n-\beta+1}{2}) \Gamma(\beta)}{\Gamma(1+\frac{\beta}{2}-n) \Gamma(2n)} \quad (2n > \text{Re}(\beta) > 0)
\]

and using the multiplication formula for the gamma function [3, p. 4(11)] we get
Fox H-function and the temperature in a slab with faces at temperature zero

\[
\frac{(2\beta)^{2n-1}}{(2\pi)^{\beta-1}I(2n)} \times \int L \prod_{j=1}^{\infty} \Gamma(b_j - f_j, f_j) \prod_{i=1}^{\infty} \Gamma(1 - a_j + ej, a_j - ej) \prod_{i=1}^{\infty} \Gamma(2 + \beta - 2n - i, \frac{2}{\beta} - i - s) \prod_{i=1}^{\infty} \Gamma(2n - \beta + 1, i - s) ds
\]

- on applying [4, p. 408] the value of the integral (2.1) is obtained.

3. The solution of problem.

The solution of the problem is

\[
(3.1) \quad u(x, t) = \frac{4}{(2\pi)^{\frac{1}{2}}} \sum_{n=1}^{\infty} (2\beta)^{n-1} e^{-\frac{x^2}{2}} \sin x H_{\beta - 2n + 1} \left(x, \frac{x}{2} \right) \sin x \sin x dx
\]

where

\[
\phi = \sum_{j=1}^{\infty} e_j - \sum_{j=1}^{\infty} f_j > 0, \quad |\arg x| < \phi \cdot \frac{\pi}{2}
\]

and

\[
\text{Re} (\beta) > 0.
\]

Proof. The solution of the problem can be written as [2, p. 139(6)]

\[
(3.2) \quad u(x, t) = \sum_{i=1}^{\infty} A_i \exp (-s^2 kt) \sin x
\]

If \(t = 0 \), then by virtue of (1.5), we have

\[
(3.3) \quad (\sin \frac{x}{2})^{2n-\beta-1} (\cos \frac{x}{2})^{\beta-1} H_{\beta - 2n + 1} \left(x, \frac{x}{2} \right) \sin x (\tan \frac{x}{2})^{2n} \left(\{a_{\beta, \beta}\} \right) = \sum_{i=1}^{\infty} A_i \sin x
\]

Multiplying both sides of (3.3) by \(\sin nx \) and integrating with respect to \(x \) from 0 to \(\pi \) we get

\[
(3.4) \quad \int_{0}^{\pi} \sin nx \sin \left(\sin \frac{x}{2} \right)^{2n-\beta-1} (\cos \frac{x}{2})^{\beta-1} H_{\beta - 2n + 1} \left(x, \frac{x}{2} \right) \sin x (\tan \frac{x}{2})^{2n} \left(\{a_{\beta, \beta}\} \right) dx
\]

\[
= \sum_{i=1}^{\infty} A_i \int_{0}^{\pi} \sin x \sin nx dx
\]

Now using (2.1) and the orthogonal property of the sine function we have

\[
(3.5) \quad A_i = \frac{(2\beta)^{2n-1}}{(2\pi)^{\beta-1}I(2n)} H_{\beta - 2n + 1} \left(x, \frac{x}{2} \right) \sin x \sin \left(\sin \frac{x}{2} \right)^{2n-\beta-1} (\cos \frac{x}{2})^{\beta-1} H_{\beta - 2n + 1} \left(x, \frac{x}{2} \right) \sin x (\tan \frac{x}{2})^{2n} \left(\{a_{\beta, \beta}\} \right) \sin x (\tan \frac{x}{2})^{2n} \left(\{a_{\beta, \beta}\} \right)
\]
with the help of (3.2) and (3.5) the solution (3.1) is obtained.

4. Conclusion.

On specializing the parameter the H-function may be converted into G-function, Bessel function, Legendre function and other higher transcendental functions [3, pp216–222]. Therefore the function $f(x)$ given in (1.5) is of general character and hence may encompass several cases of interest.

References

M. A. C. T. and S. V. Government Polytechnic, Bhopal, India.