EXTENSIVE SUBCATEGORIES

BY SUNG SA HONG

Dedicated to Professor Chi Young Kim on his 60th birthday

1. Introduction.

Using limit-operators, we have established in [10] a method to construct new extensive subcategories from well known extensive subcategories in various subcategories of the category \textbf{Haus} of Hausdorff spaces and continuous maps and the category \textbf{HUnif} of Hausdorff uniform spaces and uniformly continuous maps. In this vein, the following question is natural: Can every extensive subcategory containing the known extensive subcategory of the category, be constructed with some limit-operator?

For this question, we introduce new operators which satisfy weaker conditions than limit-operators and still give us same machinery as limit-operators. Moreover, for a hereditary subcategory \(A \) of \textbf{Haus} or \textbf{HUnif} and for an extensive subcategory \(B \) of \(A \), every reflective subcategory of \(A \) containing \(B \) can be characterized with such an operator on \(B \). Also we establish some interesting relationships between those operators and extensive subcategories.

All topological and categorical concepts will be used in the sense of N. Bourbaki [3] and H. Herrlich [7], respectively. In particular, we assume throughout this paper that a subcategory of a category is full and isomorphism-closed.

2. Extensive subcategories.

The category of topological (uniform) spaces and (uniformly resp.) continuous maps will be denoted by \textbf{Top} (\textbf{Unif}, resp.).

2.1 DEFINITION. Let \(B \) be a subcategory of \textbf{Top} or \textbf{Unif}. An operator \(l \) which associates every pair \((X, A)\), where \(X \) is an object of \(B \) and \(A \) is a subset of \(X \), a subset \(lXA \) of \(X \) is said to be an extensive operator on \(B \) if \(l \) satisfies the following conditions:

1) if \(A \) is a subset of \(X \), then \(A \subseteq lXA \subseteq cl_XA \), where \(cl_X \) is the closure operator on \(X \).

2) if \(f: X \rightarrow Y \) is a morphism in \(B \) and \(A \) is a subset of \(X \), then \(f(lXA) \subseteq lYf(A) \).

3) if \(A \) and \(B \) are subsets of \(X \) with \(A \subseteq B \), then \(lXA \subseteq lXB \). An extensive operator \(l \) on \(B \) is said to be idempotent, if \(l \) satisfies the following:

4) if \(A \) is a subset of \(X \in B \), then \(lX(lXA) = lXA \).

It is obvious that every (idempotent) limit-operator (see [8]) is an (idempotent, resp.) extensive operator on \textbf{Top}.

2.2 DEFINITION. Let \(l \) be an extensive operator on \(B \). A subset \(A \) of an object \(X \) of
B is said to be l-closed if $l_{X}A = A$. We will denote the family of l-closed subsets of X by $S_{l}(X)$.

2.3. For any subcategory B of Top or Unif, let $E = E(B)$ be the class of all extensive operators on B. We define a relation \leq on E as follows: for any pair $(l, l') \in E$, $l \leq l'$ if $l_{X}A \subseteq l_{X}A$ for every $X \in B$ and every subset A of X. Then it is easy to show that (E, \leq) becomes a complete “lattice”, where $P(l')$ with $P(l') = \text{cl}_{X}A$ ($l_{X}A = A$, resp.) is the smallest (largest, resp.) element of E and for any subfamily E' of E, $(\bigvee \{l | l \in E'\})_{X}A = \bigcap \{l_{X}A | l \in E'\}$ defines the join of E'.

For the restricted relation of \leq on the class of $IE(B)$ of all idempotent extensive operators on B again denoted by \leq, $(IE(B), \leq)$ is also a complete “lattice” with the same largest and smallest elements, while the join of a subfamily E' of $IE(B)$ in $IE(B)$ is precisely the associated idempotent extensive operator of the meet of the subfamily in $E(B)$.

2.4 REMARK. 1) For any extensive operator l on B there is an associated idempotent extensive operator l on B with $S_{l}(X) = S_{l}(X)$ for every $X \in B$, where $l_{X}A = \bigcap \{B | A \subseteq B \text{ and } B \in S_{l}(X)\}$.

2) The associated idempotent extensive operator l on B of an extensive operator l on B turns out to be the largest idempotent extensive operator on B with $l \leq l'$ and the meet of a subfamily of $IE(B)$ in $IE(B)$ is precisely the associated idempotent extensive operator of the meet of the subfamily in $E(B)$.

3) For any extensive operator l on B, there is an associated idempotent limit-operator l on B, where for any $X \in B$, l_{X} is defined as the closure operator on X with respect to the topology with $S_{l}(X)$ as a subbase for the closed sets. Furthermore, for any extensive operator l on Top, let $\Theta(l) = \{X \in \text{Top} | \text{ every member of } S_{l}(X) \text{ is closed in } X\}$. Then it is obvious that $\Theta(l) = \Theta(l)$. Hence every extensive operator on Top generates a coreflective subcategory of Top, for $\Theta(l)$ is a coreflective subcategory of Top(see[8]).

2.5 Definition. Let A be a subcategory of the category Haus or HUnif. A subcategory B of A is called extensive if it is a reflective subcategory of A such that the B-reflection maps $r_{X}: X \longrightarrow rX$ are dense embeddings for each $X \in A$.

It is well known that for every epi-reflective subcategory B of Haus, there is an epi-reflective subcategory RB of Haus such that B is extensive in RB and for any X in Haus, the B-reflection of X is factorized through the RB-reflection of X and B-reflection of the RB-reflection of X. Hence every epi-reflective subcategory of Haus can be completely determined by a certain extensive subcategory in a (hereditary) subcategory of Haus (see [6]).

Let B be an extensive subcategory A of Haus or HUnif. For an idempotent extensive operator l on B, let B_{l} be the subcategory of A determined by those objects of A which are l-closed in their B-reflection spaces.

2.6 Theorem. If A is hereditary, then B_{l} is also an extensive subcategory of A.

Proof. For every $X \in A$, let $r_{X}: X \longrightarrow rX$ be the B-reflection of X such that X is a
dense subspace of \(rX \) and \(r_x \) is the natural embedding. Let \(r_1X \) be the subspace of \(rX \) with \(I_rX \) as its underlying set. Since \(A \) is hereditary, \(r_1X \) belongs to \(A \) and the natural embedding \(r_1X \rightarrow rX \) is a \(B \)-reflection of \(r_1X \). Hence \(r_1X \) is \(I \)-closed in its \(B \)-reflection space \(rX \), so that \(r_1X \) belongs to \(B_I \). By the exactly same arguments as those in [10], we can conclude that the natural embedding \(X \rightarrow rIX \) is a \(B \)-reflection of \(X \).

2.7 Remark. 1) The correspondence \(I \rightarrow B_I \) between \((IE(B), \leq)\) and the class \(Ext_B A \) of all extensive subcategories of \(A \) containing \(B \) with the inclusion relation is monotone.

2) It is well known [2], [9], that for any subspace \(Y \) of the Katětov extension \(sX \) (see [11]) of a Hausdorff space \(X \), \(eX \) and \(eY \) are homeomorphic if \(Y \) contains \(X \). With this and the same argument as that in the above theorem, it is easy to show that the above theorem holds for the case of \(A=\pHaus \) (see [5]) and \(B=\) the subcategory of \(\pHaus \) determined by all \(H \)-closed spaces, i.e. for any idempotent extensive operator \(l \) on the subcategory \(H \) of \(\pHaus \) determined by all \(H \)-closed spaces, the subcategory \(H_I \) of \(\pHaus \) determined by spaces which are \(l \)-closed in their Katětov extensions is also extensive in \(\pHaus \).

3. Reflective subcategories of a Hereditary subcategory of Haus or HUnif.

For a subcategory \(A \) of \(\text{Haus} \) or \(\text{HUnif} \) and an extensive subcategory \(B \) of \(A \), every \(H \)-closed \(A \)-object belongs to \(B \) so that one can easily guess the smallest extensive subcategory of \(A \) containing \(B \). Furthermore, it is easy to show that every reflective subcategory of \(A \) containing \(B \) is also extensive in \(A \).

3.1 Theorem. Let \(A \) be a hereditary subcategory of \(\text{Haus} \) or \(\text{HUnif} \) and \(B \) an extensive subcategory of \(A \). For any reflective subcategory \(E \) of \(A \) containing \(B \), there exists an idempotent extensive operator \(l^E \) on \(B \) with \(E=B\cdot l^E \).

Proof. By the above remark, \(E \) is also extensive in \(A \). For any \(X \) in \(A \), let \(eX : X \rightarrow eX \) be an \(E \)-reflection of \(X \). Let \(A \) be a subset of an object \(X \) of \(B \). Since \(A \) is hereditary, the subspace \(A \) of \(X \) belongs to \(A \). For the natural embedding \(j_A : A \rightarrow X \), there is a unique morphism \(f_A : eA \rightarrow X \) in \(E \) with \(f_A eA = j_A \), for \(X \in B \subseteq E \). We define \(I_A X \) by \(f_A(eA) \). We wish to show that the operator \(l \) defined as the above is an extensive operator on \(B \). Firstly, \(A=j_A(A) \subseteq f_A eA(A) \subseteq f_A(eA)=l_X A \), i.e. \(A \subseteq l_X A \). Moreover, \(I_X A = f_A(eA) = f_A(\text{cl}_A(eA(A))) \subseteq \text{cl}_X f_A(eA(A))) = \text{cl}_X j_A(A) = \text{cl}_X A \), i.e. \(I_X A \subseteq \text{cl}_X A \). Secondly, for any morphism \(h : X \rightarrow Z \) in \(B \), we have the following diagram (Shown in the end of the proof) in which the outer rectangle and the upper trapezoid commute, where \(j_A, e_A \) and \(f_A \) can be understood such as \(j_A, e_A \) and \(h \) is the unique morphism determined by \(e_A \) and \(e_A(A) \) of \(A \). Since \(f_X(A) \) of \(e_A(A) \) of \(A \) is the reflection map. Hence \(h(I_X A) = h(f_X(eA)) = f_{h(X)} h(eA) \subseteq f_{h(A)}(eh(A)) = I_Y h(A), \) i.e. \(h(I_X A) \subseteq I_Y h(A) \). For the condition 3), the proof is simple and left to the reader. Furthermore, for any \(X \in B \), the family \(S_I(X) \) of \(I \)-closed subsets of \(X \) is precisely the family of subsets of \(X \) which belong to \(E \) as subspaces of \(X \). Indeed, suppose a subspace \(X \subseteq B \) does not belong to \(E \). Since \(E \) is extensive in \(A \), \(e_A \) is not onto and \(A \) is dense in \(eA \). Hence \(\phi \neq f_A(eA-A) \subseteq f_A(eA)-f_A(A) = l_X A-A ; \) \(A \) is not \(I \)-closed. It is very simple to show that the other inclusion and the
proof is left to the reader. Let \(l^E \) be the associated idempotent extensive operator on \(B \) with the above extensive operator \(l \). Since \(S_l(X) = S_l^E(X) = \{A \subseteq X | A \in B\} \), it is obvious that \(B^E = E \). This completes the proof.

\[
\begin{array}{ccc}
A & \xrightarrow{\text{h}lA} & h(A) \\
| & \downarrow{j_A} & | \\
eA & \xrightarrow{e_{h(A)}} & eh(A) \\
| & \downarrow{f_A} & | \\
X & \xrightarrow{h} & Y \\
\end{array}
\]

In what follows, let \(A \) and \(B \) be the same categories as those in Theorem 3.1.

3.2 Remark. For any \(E \in \text{Ext}_B A \), \(l^E \) is the largest element of \(IE(B) \) with \(E = B_l \).

Proof. Let \(l' \) be an element of \(IE(B) \) with \(B_l = E \). For any \(X \in B \) and any subset \(A \) of \(X \), we have the following commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{r^A_E} & l'_{r^B A} \\
| & \downarrow{j_A} & | \\
f_A & \xrightarrow{f_A} & f_A \\
| & \downarrow{j_A} & | \\
X & \xrightarrow{l} & X \\
\end{array}
\]

where \(r^B A \) is the \(B \)-reflection of \(A \), \(j_A \) and \(f_A \) are defined as in Theorem 3.1, and \(j_A \) is determined by \(j_A \) and the reflection \(A \rightarrow r^B A \). Then \(l'_{X A} = l'_A f_A (l'r^B A) \subseteq l'_X f_A (A) = l'_X A \), where \(l \) is the extensive operator constructed in Theorem 3.1. Hence \(l' \leq l \). By the Remark 2.4, \(l' \leq l^E \).
3.3 COROLLARY. The correspondence $B \mapsto l^B$ between $\text{Ext}_B A$ and $\text{IE}(B)$ is one-one but not necessarily onto.

Proof. The first assertion is an immediate consequence of Theorem 3.1. For the second part, let A be the category of completely regular spaces and continuous maps, B the category Comp of compact spaces and continuous maps, and E the category RComp of real compact spaces and continuous maps. S. Stróńska has shown [13] that there is a completely regular space M which can be represented as the union of two closed subsets A, B such that each of them is realcompact in its relative topology and which is not realcompact. Hence $l^n_{x_M} (A \cap B) \neq l^n_{x_M} A \cap l^n_{x_M} B$, where x_M is the Stone–Čech compactification of M. Let cls_M be the Q-closure operator (see [12]). Then it is well known [12] that $\text{RComp} = \text{Comp} \circ \text{cls}_M$ and $\text{cls}_M (A \cup B) = \text{cls}_M A \cup \text{cls}_M B$. Hence $\text{cls}_M \neq l^B$.

3.4 REMARK. By the above example, we can also conclude that B_I may contain E properly, where l is the associated idempotent limit–operator on B with l.

3.5 THEOREM. The correspondence $l \mapsto B_I$ between $(\text{IE}(B), \leq)$ and $\text{Ext}_B A$ with the inclusion relation preserves arbitrary joins and meets.

Proof. Let $(l^B)_{\lambda \in A}$ be a subfamily of $\text{IE}(B)$. Regarding joins, let $s = \bigvee \{l^A | \lambda \in A\}$. By the remark 2.7, B_s is an upper bound of $\{B_I | \lambda \in A\}$.

For any upper bound E of $\{B_I | \lambda \in A\}$ in $\text{Ext}_B A$, there is an idempotent extensive operator I^B on B with $E = B_I^B$. For any subset A of an object X of B and for any $\lambda \in A$, we have the following commutative diagram

$$
\begin{array}{ccc}
A & \xrightarrow{l^B} & A \\
\downarrow r_{\lambda} & & \downarrow r_{\lambda} \\
X & \xrightarrow{l^A} & X
\end{array}
$$

where $r_{\lambda}, l^B_{r_{\lambda} A}$ and $l^A_{r_{\lambda} A}$ are reflections of A with respect to B, E and B_I, respectively (also see Theorem 2.6) and f_{λ}, g_{λ} and h are determined by the reflection property and $B \subseteq B_I \subseteq E$. By the definition of l in Theorem 3.1, $l_{r_{\lambda} A} = f_{\lambda} (l^B_{r_{\lambda} A}) = g_{\lambda} h (l^E_{r_{\lambda} A}) \subseteq g_{\lambda} (l^B \subseteq l^E_{r_{\lambda} A} (A) = l^E_{\lambda A}; I^B \leq l^B$. By the Remark 2.4, $l^B \leq l^E$. Hence $s \leq l^E$, i.e. $B_s \subseteq B_E = E$. Hence B_s is the least upper bound of $\{B_I\}$.

Regarding meets, let $m = \bigwedge \{l^A | \lambda \in A\}$. It is obvious that B_m is a lower bound of
\{B_{\lambda} \mid \lambda \in \Lambda \}. \text{ Let } E \text{ be a lower bound of } \{B_{\lambda} \mid \lambda \in \Lambda \}. \text{ Since } E \subseteq B_{\lambda} \text{ for any } \lambda \in \Lambda, \text{ } \ell_{\alpha} X = X \text{ for every } X \in E; \text{ } m_{\gamma} X = X \text{ (see 2.3). Hence } X \text{ belongs to } B_{\alpha}; \text{ This completes the proof.}

References

Sogang University