CHAIN CONDITIONS AND Q-MODULES

BY WUHAN LEE

It will be assumed that all rings have an identity and that the modules are unital. Modules will be right R-modules, and homomorphisms will be R-homomorphisms unless otherwise stated. Previously the author defined a q-module to be an injective module in which every submodule is quasi-injective and obtained several characterizations of a q-modules and investigated the endomorphism ring of a q-module [4].

Later E. Lee [5] established that a left S-submodule sN of M_R, $S=\text{Hom}_R(N,N)$ is noetherian if and only if N_R is noetherian with respect to annihilator submodules for subsets in R. Further, he studied that if R is a right artinian ring and N_R a submodule of a q-module M_R then the left S-module sN is noetherian. Now the purpose of this paper is to study properties of a q-module with chain conditions over a commutative ring.

Let R be any ring (not necessarily commutative) and M a right R-module. Put $S=\text{Hom}_R(M,M)$, then we assume that M is a left S-module. Let N be a subset of M. Then we denote the annihilator ideal of N in S and in R by $l(N)$ and $\text{ann} N$, respectively. Similarly, by $r(A)$ we denote the annihilator submodule of M for a left ideal A in S. We call M a weakly distinguished R-module if for any R-submodules $N_1 \supseteq N_2$ in M such that N_1/N_2 is R-irreducible, $\text{Hom}_R(N_1/N_2, M)=0$. If M is quasi-injective then M is weakly distinguished if and only if $rl(N)=N$ for any R-submodule N in M [2, Proposition 6].

Finally, we shall assume that a ring R is commutative. In his paper [1] Harada states that if R is a commutative ring and M is a noetherian quasi-injective module then $S=\text{Hom}_R(M,M)$ is left and right artinian. Since every submodule of a q-module is quasi-injective and injectivity of M_R implies that of quasi-injectivity, the following statement is immediate.

Proposition 1. Let R be a commutative ring and M_R is a noetherian q-module.
If \(N \) is a submodule of \(M \) then \(S=\text{Hom}_R(N,N) \) is left and right artinian.

Proof. Since every submodule of a noetherian module is again noetherian the result is evident by [2, Theorem 1].

Let \(P \) be a prime ideal in a commutative ring \(R \). And let \(E(R/P) = E \) be an injective hull of \(R/P \). Then Matlis showed in [7] that \(E = \bigcup A_i \) and \(\text{Hom}_R(E,E) \) is a complete local noetherian ring, where \(A_i = \{ x \in E \mid xP^i = 0 \} \). Let \(\{ P_i \} \) be a finite set of distinct maximal ideals in \(R \). Then according to Harada [1], every \(R \)-submodule \(N \) of \(\bigoplus E(R/P) \) is weakly distinguished and quasi-injective.

Since its implication seems to be interesting, we furnish a rough proof here.

Proof. We may assume that \(N \) is an essential submodule of \(E = \bigoplus E_i \), \(E_i = E(R/P) \). Then \(\text{ann} \ x \supset P_i \) for any \(x \) in \(N \). Let \(N_1, N_2 \) be \(R \)-submodules of \(N \) such that \(N_1/N_2 \) is \(R \)-irreducible, then \(N_1/N_2 \cong R/P_i \) for some \(P_i \). Since \(N \cap R/P_i \neq (0) \), \(\text{Hom}_R(N_1/N_2, N) \neq (0) \), which means that \(N \) is weakly distinguished. Hence, \(E \) is an \(R \)-weakly distinguished injective module. Moreover, if we put \(S = \text{Hom}_R(E,E) \), then \(S = \text{Hom}_R(E,E) \). Hence, every \(R \)-submodule \(N \) is an \(S \)-submodule by [1, Lemma 1]. Let \(E' \) be an injective hull of \(N \) contained in \(E \). Then \(E = E' \oplus E'' \) and \(E' \supset N \). \(S' = \text{Hom}_R(E', E') \) may be regarded as a subring of \(S \). Hence, \(M \) is also an \(S' \)-module. Therefore, \(N \) is \(R \)-quasi-injective by [3, Theorem 1.1].

Proposition 2. Let \(R \) be a commutative noetherian ring and \(\{ P_i \} \) be a finite set of distinct maximal ideals in \(R \). Then the direct sum of injective hulls \(\bigoplus E(R/P) \) is a weakly distinguished \(q \)-module.

Proof. The injective hulls are naturally injective and hence the conclusion is immediate from the definition of a \(q \)-module.

Now assume that a ring \(R \) is not necessary commutative. A. Koehler [4] obtained a characterization for quasi-injective modules over left artinian rings which have a finitely generated, lower distinguished (contains an isomorphic copy of every simple module), and injective module \(Q \). This class of rings includes quasi-Frobenius rings and finitely generated algebras over commutative artinian rings. According to Koehler, a module \(M_R \) over such a ring is quasi-injective if and only if

\[
M = \bigoplus_{i=1}^{k} \left(\text{Hom}_R(e_i S/e_i J, Q) \right)^{\times (i)}
\]
where $S=\text{Hom}_R(Q,Q)$, e_i is an indecomposable idempotent in S for $i=1, \ldots, k$, J is an ideal of S, the number of nonisomorphic simple R-modules is k, and for $i \neq j$, $e_iS \not\cong e_jS$. This decomposition is unique up to automorphism. Here $\sum \oplus M_i^{g(i)}$ denotes the $g(i)$ copies of M and $g(i)$ can be any cardinal number. If $g(i)=0$, then $M_i^{g(i)}=0$.

Proposition 3. Let R be a left artinian ring and have a finitely generated lower distinguished, and injective module Q. Then a submodule N_R of a q-module M_R is expressed uniquely (up to automorphism) as

$$N = \sum_{i=1}^{k} \oplus (\text{Hom}_R(e_iR/e_iJ, R))^{g(i)}$$

where $S=\text{Hom}_R(Q,Q)$, e_i is an indecomposable idempotent in S for $i=1, \ldots, k$, J is an ideal of S, the number of nonisomorphic simple R-modules is k, and for $i \neq j$, $e_iS \not\cong e_jS$.

Proof. Obvious.

Corollary. Let R be quasi-Frobenius. Then a submodule N_R of a q-module M_R is expressed uniquely (up to automorphism) as

$$N = \sum_{i=1}^{k} \oplus (\text{Hom}_R(e_iR/e_iJ, R))^{g(i)}$$

Proof. R being quasi-Frobenius implies R is left artinian, selfinjective lower distinguished, and finitely generated. Also $R=\text{Hom}_R(R, R)$.

References

Seoul National University