A NOTE ON THE PROOF OF THE RELATION

\[X'(X'X)^{-1}X = 1/n \]

BY HEE-KYUN CHOI

1. Introduction.

It is well known that in the multiple regression model

\[Y_i = B_1 + B_2X_{2i} + \cdots + B_kX_{ki} + u_i \quad i = 1, \ldots, n \] (1)

\[E(u_i) = 0 \quad \text{for all} \ i \] (2)

\[E(u_iu_j) = \begin{cases} \sigma^2 & i = j: i, j = 1, \ldots, n \\ 0 & i \neq j: i, j = 1, \ldots, n \end{cases} \] (3)

the error variance of predicting the expected value of \(Y \) associated with \(X_0 \) is given by

\[\text{Var}(\hat{Y}_0 - E(Y_0)) = \sigma^2 \ (X_0'(X'X)^{-1}X_0) \] (4)

where \(\hat{Y}_0 \) is the prediction of \(Y \) at \(X_0 \) and

\[X_0 = \begin{pmatrix} X_{20} \\ X_{30} \\ \vdots \\ X_{k0} \end{pmatrix}, \quad X = \begin{pmatrix} 1 & X_{21} & \cdots & X_{2k} \\ 1 & X_{31} & \cdots & X_{3k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{k1} & \cdots & X_{kn} \end{pmatrix} \]

The matrix \(X \) on \(n \) sample observations on the \(k \) independent variables with \(X_{1i} = 1 \) has rank \(k < n \) and the vector \(X_0 \) is the particular values of the independent variables to predict \(Y \).

Desalvo [1] has shown that error variance at the sample mean of \(X \) is given by

\[\text{Var}(\hat{Y}_0 - E(Y_0))_{X_0=x} = \sigma^2(X'(X'X)^{-1}X) = \sigma^2/n \] (5)

as proving the relation

\[X'(X'X)^{-1}X = 1/n \] (6)

without statistical property as will be shown below.
<A summary of Desalvo's proof>

\[X'(X'X)^{-1}X = \frac{1}{\|X'X\|^2} \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ri} X_{rj} c_{ij} \]

\[(C \text{ is the cofactor matrix}) \]

When \(r=1 \) in the right side of (7)

\[\sum_{i=1}^{n} X_{ri} \sum_{j=1}^{n} \left(\sum_{i=1}^{n} X_{ri} \right) c_{ij} = n \|X'X\| \]

while \(r \neq 1 \),

\[\sum_{i=1}^{n} X_{ri} \sum_{j=1}^{n} \left(\sum_{i=1}^{n} X_{ri} \right) c_{ij} = 0, \]

hence

\[X'(X'X)^{-1}X = 1/n. \]

Now we will show a simpler method for the proof of the relation (6) with such statistical property as the least-square method.

2. An alternative proof.

A consequence of the least-squares fit is that the sum of the residuals is zero.

That is

\[\sum_{i=1}^{n} e_i = 1'(I_n - X(X'X)^{-1}X')U = \sum_{i=1}^{n} a_i u_i = 0, \]

where \(u_i \) and \(a_i \) are the \(i \)th component of the disturbance vector \(U \) and \(A' \)

\((=I_n - X(X'X)^{-1}X') \) respectively and \(\mathbf{1} \) denotes the vector of \(n \) unities.

Then it is clear that \(u_1, u_2, \ldots, u_n \) are linearly independent and every \(a_i = 0 \) by (3) and (9) respectively. i.e. \(A' = 0 \).

Since \(I_n - X(X'X)^{-1}X' \) is symmetric and idempotent [2] and \(X = \frac{X'1}{n} \)

we obtain that

\[0 = 1'(I_n - X(X'X)^{-1}X') (I_n - X(X'X)^{-1}X')'1 \]
\[= 1'(I_n - X(X'X)^{-1}X')1 \]
\[= 1'I_n - 1'X(X'X)^{-1}X'1 \]
\[= n - nX(X'X)^{-1}Xn \]
A note on the proof of the relation $\bar{X}'(X'X)^{-1}\bar{X} = 1/n$

hence

$\bar{X}'(X'X)^{-1}\bar{X} = 1/n$.

This final result is the same as that of Desalvo.

References

Ajou Institute of Technology