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1. Introduction

Euler-Bernoulli theory of beam vibration
is based upon some restrictive assumptions,
such as those for small deflections, where
the supports are free to move in the axial
direction and the deflection is inextensional,
and so on. Effects of shear deformation
and rotary inertia may be taken into ac-

count to improve the classical theory. It is
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so called Timoshenko beam theory. These
two theories are linear ones, so that it can

be considered a well-defined one. In prac-
tice, however, the nonlinearities in a beam
vibration arise due to the following:

1. Large curvature.

2. Longitudinal elastic forces generated

due to immovable supports.

3. Longitudinal inertia forces.

4. Rotary inertia forces.

Much of the earlier work on the nonlinear
transverse vibration of beams: Woinowsky-
Krieger [1], Burgreen [2], MacDonald [3],
Wah [4], Srinivasan [5], Evensen (6], Ray
& Bert [7), Elsley [8], (9], and Dickey
(101, has been considered with simply sup-
ported or clamped beams whose ends are
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restrained from axial displacement. In these
works, the effects of longitudinal and ro-
tary inertia, and that of shear deformation,
have been neglected, and the only nonline-
arity considered is that due to the average
longitudinal elastic force generated due to
the average midplane stretching induced
when the supports are held a constant end
distance. The resulting equations, involving
only one nonlinear elastic term have been
solved in terms of Jacobi elliptic functior,
or by Ritz-Galerkin method, or by the per-
turbation method of strained parameter.
Buchanan et al. (117 derived the static
equations governing the nonlinear behavior
of hinged elastic bar involving the effects
of large rotation, longitudinal elastic force
and shear deformation. They solved it by
the method of strained parameter and poin-
ted out that for some combinations of
length and cross-sectional shapes including
the shear deformation causes a distinct dif-
ference in the static deflection curve. Atluri
(12 studied the nonlinear inertia effects
including the effects of large curvature,
longitudinal inertia and rotary inertia, while
the effects of midplane stretching and shear
He solved the
resulting nonlinear partial differential equa-

deformation are neglected.

tion analytically by the perturbation me-
thod of multiple scales and concluded that
the predominant nonlinearity is that due to
nonlinear longitudinal inertia which is of
softening type. Rao et al. [13] showed the
effects of shear deformation and rotary
inertia on the large-amplitude vibrations of
beams by finite element method.

In the present analysis, the beam is con-
sidered as simply supported and one end of
the beam (x=/) is assumed to be free to

move in the axial direction. The effects of
longitudinal inertia and
while the
effects of midplane stretching and rotary

large curvature,
shear deformation are included,

inertia are ignored. The reason for omit-
ting the rotary inertia instead of shear de-
formation is that the effect of latter is
more predominant than that of first on the
vibration frequency [14]. Analytical results
by the perturbation method of multiple
scales are obtained for the general res-
ponse and amplitude-frequency relations.
An example and comparison of results are
presented.

2. Basic Equations

The equations of the lateral vibration of
the beam can be written as

Pw 0@ _ 2 L
0T ax ox N ox ) @1
’u___ N
T @2
oM
e =@ . (2.3)
where

x : axial coordinate along beam,
u - axial displacement of beam,
w : transverse displacement of beam,
o mass per unit length,
@ : transverse shear resultant,
N : axial force positive in compression,
M : bending moment along beam.
The axial displacement due to large tran-
sverse displacement is given by

u(x,t) = —%S;(%Cw‘ )de 2.4)

if in the binomial expansion only the first
two terms are retained.

Substituting (2.4) into (2.2) and using
the conditions #(0,7)=0, N(,t)=0, the in-
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tegration of (2.2) leads to
_ 1 1 32 x,ﬁaﬂ\z
N(x’i)‘”z“p.s, e [So( o% )dx}d"' 2.5)

Noting the relations
— v oW
M=E1 2, Q=rcA( v~ 34)  @.6)

where
[ : length of beam,
E : Young’'s modulus,
: area moment of inertia,
: angle of rotation due to bending,

: shear modulus,

1

[

k : shear constant,

G

A :cross sectional area

and eliminating ¥ from (2.1) and (2.3),
we obtain

o'w _ pEl ?'w
2 ax‘ kGA ox*0t? T Btz
ow El ks ow
(N + EGA ox® (N ox
2.7

which is a nonlinear partial differential
equation ; because of the right-hand-side
terms.

A modal expansion for w can be assumed

as

w=572,0) sinTx 2.8)
which satisfies the simply supported boun-
dary conditions

otw

5y =0 at x=0 and x=1. (2.9)

w=
Substituting (2.8) into (2.9), we obtaina
single nonlinear ordinary differential equa-
tion for the dependent variables 7,(f) (n=
1,2,...... »S) by using the Galerkin technique.

ii+wjzal = Z Z ZAmnrj (qrénjm+qrqnim)

(2.10)
where

wli= wJO ].47'1.’4 _E!_
’ iz * p
”kGA( m)
(2.11)
2—-”3—
C= EI z (2.12)
1+2ca /
mnrl—< mnr} kGA mnri )CJ (2‘ 13)
am,,,—mnrg (f,,.,, C0S —— X +— r:r = F,,
sin 27 x )sin i7—~dx 2.14)
bmnri:m”rg:)( fmn” cOSs Iln— x—t Jiirfmn’
sin Ilf— x ~—~3~’;—2— 72 COS ff—x
N .
——?3- rF,, sin»’—;—rfx ) sin -’T dx
(2.15)

Sun(x) = 50 COS—~x cos 'l‘ xdx

=( ful (2.16)
Fa)={ fra()dx
gl HO cos-% x cos” l = 1 ded
@.17)

8. Analytical Solution

The system of (2.10) can now be solved
for any initial conditions of the type

1
LO=cc, L=cds, ate=0 @1

where ¢ is a small parameter that defines
the amplitudes of the initial conditions.
Then we may take the form for the solution
of (2.10) as

7,(8) :e%q; @ (3.2)
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Using (3.2), equation (2.10) is reduced to

=—eX DN Anni 4:G-Gn
—eX N0 A G940 (3.3)

This type of equation can be solved by

§,+w’g,

using the perturbation method of multiple
scales 9. To do this we assume that there
exists a uniformly valid asymptotic solution
g.(t) of the form

xr—1

gt :‘_iJ e"Gim (Tou Ty ooy Ta) +0(e Tr)
(3.4)

whers

T, =emL. (3.5)
The time derivatives are transformed ac-

cording to

4 _ &, 0
dt oo 8T,
I A A
i T == ST T (3.6)
Substituting (3.5) and (3.6) into (3.3),

and equating the coefficients of like powers
of ¢, we obtain the following system of
equations for ¢;, (m=0,1,2: M).

gl ;%1 Folgi=— 7%%917
“IIZg,,, 000 U
—LZZg q,aquo—a%’%- (3.8)

Similar equations can be written for hig-
her rowers of e.

The initial conditions (3.1) can be writ-
ten as

aq!() —d

q0=c,, T forT,,=0, 3.9
— _aqfﬁﬂ aq:l —n —_

q;»=0, = ST for T,.=0

................................................... (3.10)

The general solution of (3.7) is
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4,0=4,(T, T;, -, Tw) exp (iw;Ty)
+1‘_1J(T1, Ty, =, Tu) exp (—ie;Ty).
31D

Where 7=v'—1. A; is a complex number
and A4, is the complex conjugate of A, A,
and A, can be determined from the initial
conditions of (3.9).

Substitution for g, equation (3.11), into
(3.8),

0 ql !
sz T Wy CI/L"‘

— -g‘%—exp (—iw,;Ty) 1

we obtain

—2%w, {6;1‘ Zexp (fw; Ty

+ Z Z L.J‘4mnr}a)mwn [Arexp (iw, TO)

m n T

+A,exp(—iw, To) 1% Aexp (iw,To)
rTA.explio, Ty
—A,exp(—iw,To) ]

+ L XL Ammiw,’ [Aexplio Ty

m 5 r

—A,exp(—iw,Ty)

+A,exp(—iw, To) 5 x Aexp (o, T;)
+Aexp(—iw, To) [ Anexp (e, Ty)
+A,exp(—iw,T5) ] (3.12)
Collecting the terms on the right-hand
side which vary with o; only, the equation
can be written as

94 qi1_ _ . 04 .
aT 2 +olg,=— ( 21(0]"“—87«1
—f'AingAm/‘-lm)exp (fw; Ty)

"lq _

. BA, M n
+< 21w,~§:1T+A;mngAmAm) exp
("Z‘(D]‘ To) + Z F:exp (lws TO)

+ X P.exp(—io.Ty) (3.13)

where w, stands for the combinations
0, =1, o de.
such that o.*=w;, and

[ =24 o, for m=j
&= —2(Ajpimt Ajmmi) 0 fOr m=j
(3.15)

The explicit expressions for P. are leng-
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thy and hence are not recorded here. In
order to eliminate the terms which produce
secular terms, we must take

2iw; 2 1 A7 g A4, =0. (3.16)
T, AL

The system of (3.16) can easily be solved
by letting
A=V, exp (66,), (3.17)
where ¥, is a real quantity. Substituting
(3.17) into (3.16),
imaginary parts, we get
v, 2, _ 1

and separating real and

oT, 0 o1, 2e, 2&TA G18)
Hence, we get

V=¥ (T, Ty, , Tu)s 3.19)
and
6) 2(‘) [ngw‘ 2\T1+010(T29 """ s TM)-

(3.20)

Now (3.17) becomes
A”(Th TZ; ...... TM) —

A/ eXp[ C DgaAd'A )TI} (3.21)
where

A =T (T e » Tw) exp (i0,) (3.22)
On account of (3.16), equation (3.13) is

reduced to

0% ‘g =P, expw,Tp)
”aToz’ wj‘]:‘l*'AS—/ s plzw, Ly

+XP, exp(—iw.Ty), (3.23)

which has the solution
gn=B(Ty, Ts) exp(tw;Ty)

+B(Ty -+ Tw) exp(—iw,To)
Pexp ({w,T,) +P, exp(—iw,Ty)

wl—w?,

+\_
(3.24)
Where B, and B, are determined from the

initial conditions

= vafle:__ 94,0
q11_01 91—'0 3T1

Therefore, in terms of 7, 7;¢> has the
form
T =c" A/ explio/t)+A, exp(—iw,t) ]
+¢%2(B; exp(z'w-t)+[?-exp (—fw;t)

P.explint)+P, exp(—zw 1)
+2 wr—w,? J

’-‘“0 (55; zt) )
where

w; =w; [ l+-— ) g,,,A 1A, J

(3.26)

(3.27)

Equation (3.26) shows that there is the
nonlinear coupling between the modes. On
the other hand (3.27) indicates the effect
of coupling bewteen modes on the frequency
of natural vibration of each mode. Now a
specific example to see the effects of the
longitudinal inertia and shear deformation
on the natural frequency is discussed.

4. Discussion

We now choose an example to illustrate
the effects of large amplitude, longitudinal
inertia force and shear deformation on this
nonlinear behavior of beam. A beam of
rectangular cross section with constant
thickness (%) is considered. We assume that
the beam is excited in the first mode with

the initial conditions,

a ‘ .
w(x, 1) =0, 'Tl;)‘ = &%, Sm—-—l’z x
at £=0 4.1)

Where o, is the linear natural frequency
of the first mode, then the corresponding

initial conditions for 7; are

,=0, j=1,2--
ja—(;l_:sl“"zdn (4.2)
%4; _ o a .. -
5t =0, j=2,3,-, at =0

From (3.11) and (3.21), the zeroth-order
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solution, using (4.2), is

(110:d1 sin wlt, qw:() for k>1, (4- 3)
and
— ed,? gl
of=o,| 1+ o J (4.4)
From (2.11), we have
w = (2; 2 WIDZ:%I‘“ZEL‘
e EGA 7
(4.5)
and from (3.15)
g=—24w? 4.6)
in- which, from (2.12)and (2.13), we have
I
Axlu:(auu kgA a0 /C
7!
C = Z*ZT
l H~§E1 z
kGA .1/ 4.7)
The integrations of (2.14)~(2.17) leads
to
/2 /2 7’
(lnn:”gzy-bsg?, bun=-— 332” “”%é—'

Hence (4.6) becomes
_ TaP 3 13 EI ,
&= [ ARSI S )k(;A}C‘“"
(4.8)

From (4.4), we finally obtain
o/ —1+~«’ d, 2{_54_+ 3n* _< 13#*

Wy )

in which

~

o:% (slenderness ratio),

and it is assumed

E_ _ W i
G =28 k=, A"

r: radius of gyration.

The ratio of the nonlinear frequency to
the linear frequency with shear effect, e-
quation (4.9), shows that the nonlinearity
is of softening type which the frequency

decreases with amplitude. To compare the
tendency of softening effect in this problem
with that of the case studied by Atluri{12],

set §=0.01, then (4.9) becomes

/
1 =10, 000182 )’ (4.10)

For the case including rotary inertia but
neglecting shear deformation Atluri [12]
showed

J’(-j:— =1~0.0003:( -2 )’

4.1D)

These two equations show that Atluri's
case is more affected than the present case

by the nonlinear longitudinal inertia effect.
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