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Abstract

A coupled-mode approach is used to analyze the interaction of the carrier wave in solid-state

materials with the external slow electromagnetic wave. A general condition for an active coupling

is derived. Gain characteristics is also examined as a function of operating frequency and thermal-

to-drift velocity variations.

1. Intreduction

Solid state traveling-wave amplifier (STWA)
has been studied by many research workers
recently @ ©» @, & Jtg most attractive
feature is the extremely high gain, and broad
frequency band characteristics, which make it a
potential active device in microwave intcgrated
circuit systems. There are some practical diffic-
ulties such as the device heating problem and
the saturation of carrier drift velocity. However,
with the rapid advance in solid state technology,
it is feasible that STWA might be able to oper-
ate at higher power and higher frequencies. The
methods of analysis were either using an exten-
ded classical Pierce’s approach . or matching
the wave admittance at the slow wave and sem-
iconductor boundary <. Both approaches are
rather lengthy, but the results are inaccurate or
doubtful.

In most cases, some of the important aspects
such as coupling scheme, energy exchange betw-
een the circuit and carrier wave, and the way
of finding dispersion relation were not clearly
revealed. In this paper, the coupled mode appro-
ach is presented, which appears to be simpler

and clearer in describing the various possible
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interactions.

2. Theoretical Analysis

Consider a single type of charged carrier in
solids drifting a tightly coupled clectromagnctic
slow wave circuit. The equivalent transmission
line equation for the collisionless longitudinal
carrier wave is given by Ho and Fanson, and
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The characteristic impedance of the equivalent
line is
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The normal modes of the fast and slow carrier

waves are defined as .
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The upper and lower signs are for the fast and
slow carrier waves repectively.
For a lossless slow wave circuit, the transmi-

ssion line equation is
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where Z and Y arc the series impedance and
shunt admittance of the circuit respectively. The
normal modes are .
. 1
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Upper sign is for the forward circuit wave, Z.

is the circuit characteristic impedance. When the
circuit and the carrier stream arc closely coupled,
the couple-mede equations arce

For carrier wave
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In terms of normal modes, the above equations

ccome
<77£; +1ﬁ1—7)61++('—% ’f]ﬂr%“z' )ax_
NE A e (12)

('5%"]']31 +Y;AZG))~’51‘ _<‘an_, b "Y;AZo)

@t =0 E)
ERPWRER
(2 (i

=L e et (15)

For traveling-wave amplification the forward
circuit wave a;* is strongly coupled to the slow
carrier wave a,-. The coupled-mode equation are

then reduced to
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The transfer factor, which is defined as the
fraction of the total power transfer between
modes (6), is found to be
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Chose coupling occurs when two modes are

synchronized, that is
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Assuming the coupled modes have the form el™,
the propagation factor 7" is found from Egs. (16)
and (17) to be
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The positive real part of I' gives growing

wave. Maximum gain occurs at the synchronized
givea by Eq. (19). The maximum gain per
wavelength is
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3. Discussions

Computer plots of gain per wavelength as a
function of thermal to carrier drift velocity and
operating frequency are shown in Figs. 1 and 2
respectively. It is noted from Fig. 1 that the
device gain increases indefinely as the carrier
drift velocity by the bias potential approaches.
the thermal velocity. This, however, will not
occur in this interaction since the slow carrier
wave will slow down tremendously as u,-—v, and
eventually propagates backward as w,<zw, ®.
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Fig. 1. Relative gain as a function of
hermal velocity ratio.

as parameter.
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Fig. 2. Relative gain as a function of operation
frequency.

In order to maintain synchronism between the
waves of the carrier and a practical slow wave

circuit the w,-to-v, ratio should have a value about
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1.5 or greater as indicated in the figure. Figure
2 shows the interaction itself is almost indepen-

dent of operating frequency for w>w,.
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