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2-dimensional Hydrodynamic Forces of Heaving, Swaying and Rolling

Cylinders on a Free Surface of a Water of Finite Depth.
by
Rhee, K.P.*

Abstract

The hydrodynamic forces acting on a forced oscillating 2-dimensional cylinder on a free surface
of a fluid of a finite depth are calculated by distributing singularities on the immersed body surf-
ace. And the Haskind-Newman relation in a fluid of a finite depth is derived.

The wave exciting force of the cylinder to an oscillation is also calculated by using the above
relation. The method is applied to a circular cylinder swaying in a water of finite depth, and
then, to a rectangular cylinder heaving, swaying, and rolling. The results of above cases give a
good agreement with those by earlier investigators such as Bai, Keil, and Yeung.

Also, this method is applied to a Lewis form cylinder with a half beam-to-draft ratio of 1.0
and a sectional area coefficient of 0.941, and to a bulbous section cylinder which is hard to repr-
esent by a mapping function.

The results reveal that the hydrodynamic forces in heave increase as the depth of a water decr-
ease, but in sway or roll, the tendency of the hydrodynamic forces is difficult to say in a few

words. The exciting force to heave for a bulbous section cylinder becomes zero at two frequencies.

The added mass moment of inertia for roll is seemed to mainly depend on the sectional shape
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than the water depth.

1. Introduction

To predict the motion response of large tankers or
ocean platforms in a seaway,the hydredynamic forces
in a depth of a finite water are needed.

The theoretical treatment for this type of a problem
was begun at 1949 by Ursell (1], who calculated the
hydredynamic forces acting on a forced heaving semi-
circle in a deep water by using a velocity potential
represented by multipoles and a singularity at an orig-
in. Tasai [2Jand Porter extended the Ursell’s method
by means of a conformal mapping, and found solutio-
ns for ship-like Lewis form sections for heave, sway
and roll. But, for the conformal mapping method, the
calculable sectional shape is limited. In order to avoid
such demerits, Frank(3] introduced an integral equation

method, which had been succeeded by MacCamy and

Kim{4} in case of a shallow draft problem, to a two-
the

hydrodynamic forces for heaving arbitrary cylinders

dimensional case. Maeda [5], also, calculated

in a deep water by using the Fredholm’s integral
equation of first kind.

On the other hand,
depth of a water was begun at 1961 by Yu and Ursell
[6). They found the amplitude ratio for forced hea-

the calculation for a finite

ving semi-circle by a multipole expansion method,and
C.H.Kim{7] extended the multipole expansion method
to a finite depth. Also, Bai(8)
problem by a Finite Element Method and Yeung{9}

solved the above
got a solution by distributing a fundamental source
over all boundaries.

In this paper, the hydrodynamic forces for heaving,
swaying and rolling cylinders are calculated by dist-

ributing a Green function, which satisfies all boundary
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conditions, on a immersed body surface, and the wave
exciting force is calculated by the Haskind-Newman

relation relation which is derived in this paper.

2. Governing Equations

We suppose the region x>0 to be filled with an
incompressible, inviscid fluid, ;=0 being a free surf-

ace, x1 being taken to be coincided with that surface
when the fluid is at rest as shown in Fig.1.
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Fig. 1. Coordinate system

Suppose now that a long rigid body of uniform
cross section is placed in the free surface and set
into forced motion which is periodic in time with a
circular frequency . After transients have died out,
we can assume the resulting motion to be time periodic
with frequency . We also assume it to be irrotati-
onal, so that there exists a velocity potential @;(zy,
Za,t), the gradient of which gives a fluid velocity.

From the periodicity in time, we can write

O;(x1,x0,8) = (x1, 1) ™ 37=0,1,2,3,4 (2—1)
where the subscript j denotes the mode of motion

such as
j=1; sway
j=2 ; heave
j=3 ; roll
7=0 ; incident wave

j=4 ; diffracted wave
The velocity potential ¢; can be found as a solution

of the following boundary value problem.

V2¢;==0 in the fluid region (2—2)

Kpi+-22 =0 on z,=0 (2—3)
axz

99— on zy=h (2—4)

312

o 08 gpecyy coshko(h—Z0) ziros,
Ly w*H, (ko) coshih ¢ as xy—oo

(2—5)
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I (go+o0) =0
where K, %y and H; mean the wave number, shallow

water wave number and amplitude function of diverg-
ing wave, respectively

3. Integral Equation

If we take a Green function G which satisfies Eq..
(2—2)~Eq. (2—5), then the velocity potential ¢;
(M) at an arbitrary point M(xy,z2) can be represented
in terms of singularities distributed on the body

surface C at points Q(a,b) as
$:00= [ 0,(QCMQAQ)

where 0;(Q) is a line intensity of singularities and
must be determined with the Eq.(2—6) for each mode.

(3—1

For the simplicity, let’s take a stream function ¢

which is a conjugate function of ¢. Introducing ¢

instead of ¢ in Eq. (3—1) and Eq. (2—6) leads to
the following equations respectively.
6= [ 0, @I (3—2)
$1=—xa-+c1
pp=z1F 0, on the immersed
(33>

gba:-%-(.’l:]z"l'xzz) 4¢3 | body surface
Po=—dotcs
I is the conjugate function of G and ¢; are the com-
plex unknown constants.
The Green function G in Eq.(3—1), which can be
got as a solution of Eq.(2—2) with boundary condi-
tions, Eq. (2—3), Eq. (2—4) and Eq. (2—5), can

be written as follows.

G:Gc+iGs (3_‘4)
where
. cosh ko(h—8) cosh ko(h—xp) . _
Ge=tn koh+ sinh2koh sinkolz~al.
_ 3 coskn,(h—b)coska(h—%2)  -tnjz,-a
AR 2kaht sin2kah et lnel
(3—5)

coshko(h—8)coshke(h—zx2)
2koh+slnh2koh

Gs=—4=n

cosko(x1—a)

(3—6
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And the conjugate function of G,I', can be written as
r=re+ils 3—7)
where
Ie=sgn(z1—a)

[_ in coshko(h—b)sinhko(h—z3)
2koh—+sinh2koh

cos kolzi—al

_i dn cosk,(h—b)sinkn,(h— z3)
n=1 2kyh-+sin 2kah

[=—4r coshko(h—b)sinhko(h—z,)
2koh+sinh2kgh

_hnlx—a]] (3—8)

sin ko (11_0)

3—9

In the above equations, k; and k. are positive roots of

Kh=Fkok tanh koh (3—10)
and

Kh=—F,htan k.h (8—11)
respectively.

4. Hydrodynamic Forces

Let F;; be the j-th component of hydrodynamic force
due to an i-th mode of motion with unit velocity
amplitude, then from a Bernoulli’s equation, Fi; can

be written as

A __0¢;
Fij zpr‘ ¢ dl

4-1

where ¢ is the velocity potential for i-¢2 mode of
motion and is determined by substituting line intensity
o; which is the solution of integral equation (3—2)
into the Eq. (3—1).

Let fi; be
__Fy _ ; _
== S P (4—2)
Then, added mass or added mass moment of inertia

pij and damping or damping moment 1;; are represe-

nted as
i =—pfi 4—3)
2ij=paf Cot))
respectively, and
Si=Fi+if (4—5)

On the other hand,j-tk component of wave exciting
force, Ej, due to an incoming wave with amplitude
» from negative zi-axis can be written

Ei= —pgn | oto0 2 a

(4—6)

5. Haskind-Newman Relation

The Green function G at infinity of z; axis is

15
~odr; C0sh ko(h—b)coshko(h—22) .4 x-a
Grdri 2koh+ sinh2ksh € !
as ixp|-—roo Wiy

Also, the velocity potential ¢; at infinity of =, axis
can be got from Eq.(3—1) and Eq.(5—1) for each:
mode of motion.
girvife(an)emihe (Ko +iKe,) as zimmioo;j=2
(5—2)
i~TFfe(z) ks (K2, +iK2,

as zy—too;

i=1,3 6—3)
where
=z COsh ko(h—z5) 4y
ez =l e Ginkokoh e
K;: Gjs
=j cosh ky(h—b)coskeadl (5—5)
K;c ¢ Tjc

K_l;, Ojs
—_—j cosh ko(h—b)sinkpadl (5—6)

t Kjbc O je
The amplitude function of diverging wave in radia~

tion condition (2—5) is now determined as follows

+ __® A4=coshkoh - s
Hj (k)= Shoh-sinhzkoh (Re TG I=Z
(65—7)
+ (g y=_i® , _dacoshkoh
H (k)= z 2koh+sinh2koh (Kie+iK})s
Jj=13 5—8)

Then, the damping or damping moment A; and

wave exciting force E; can be written in terms of

amplitude function of diverging wave by Green’s
theorem as
kok
Z.,——4—(tanh kot - o “cosh? koh )
(HiH{+H/H}+H; Hy+H;H;)  (5—9

where the bar means the complex conjugate,
and

koh
cosh2koh

respectively. The above equation is called the Haski-

2
Ey=—-8" [tanh koh-+ ] Hiy(5—10)

nd-Newman relation for a water of a finite depth.

6. Numerical calculation and discussion

To solve the boundary value problem, the Fredh-
olm’s integral equation of first kind had not been

used because the unique solution did not exist. Since,.
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for this kind_of boundary value problems, it only
need mean values of solutions and the uniqueness of
them was proved earlier [10]. To use the Fredholm’s
integral equation of first kind makes the numerical
procedure simpler than to use the integral equation
of second kind.

In this type of a boundary value problem, the
Sommerfeld’s radiation condition;

k:—K?

¢j~_2ﬂlmj‘ COShko (h"—xz).

e (K3, +iK%) as zp—too (6—1)

has been imposed to make a solution unique. In nume-
rical calculation, since the numerator, k®>—K?, in Eq.
(6—1) vanishes above a finite frequency value, the
«calculable frequency range, in which the unique solu-
tion exists, is limited and is dependent of depth of
water and wave number.

As a sample calculation, circular cylinder, Lewis
form cylinder with a half beam-to-draft ratio, B/2T,
of 1.0 and a sectional area coefficient, F/BT, of
‘0. 941, rectangular cylinder with a half beam-to-draft
ratio of 1.0 and a bulbous section cylinder shown in
the figure below are taken.

The hydrodynamic forces calculated by distributing
11 point singularities on the immersed body surface
.are nondimensionalized as follows and compared with
those of others,

I .1=1,2,3
— [ 4 "i=1,2
Bii= 4 i i=1.2.3 (6—1)
e o 1=1,2,
l or(B/2)* °j=3
ki .i=1,2,3
~ pwF ’j=1,2
4= i . (6—2)
PR P A 1:1,2’3
por (B/2)? 7 j=3
E, .
[ ogkonp J=1
EJ: < pr:y%_ =2 <6_3)
(&  .._
gk T~ 77 3

where 7, B, T and 5 represent immersed cross secti-
onal area of body, beam, draft and amplitude of inco-
ming wave, respectively.
6—1 Heave
In this case, the hydrodynamic forces for a rectan-

gular cylinder and a bulbous section cylinder are
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calculated. The result of the added mass for a recta-
ngular cylinder was compared with others in Fig.2,
and it can be shown that the authors had a mean
coinsided with
others. In Figs. 4 and 5, the depth effects on added

mass and damping, that is, the hydrodynamic forces

value. That of the damping, Fig.3,

are increasing as the depth is decreasing,was shown.
The comparison of added mass for a bulbous section
in heave with those of Bai and Yeung in a deep
water, Fig.6, revealed that the added mass at depth-
to-draft ratio, 2/ T, of 5.0 has nearly same values
with those of a deep water except small wave number,
Ka, ranges. The wave exciting forces to heave of a
bulbous section are shown in Fig.7, and a bulbous
section has zero exciting forces at two wave numbers
for each depth to draft ratio.
6—2 Sway

At first, the hydrodynamic forces acting on a semi-
circle, swaying on a water of finite depth, A/ T=5.0,
were compared with those by Yeung in Fig.8. And
the depth effects in a swaying oscillation on hydrod-
ynamic forces for a semi-circle were shown in Figs.
9 and 10. From the former it can be seen that the
added mass had a opposite tendency from heaving,
that is, the added mass decreases as the depth decre-
ased in a dimensionless wave number region above
0.2. For a Lewis form, and a rectangular cyclinder
Figs. 11, 12, 13 and 14 the tendency was nearly the
same as those for a circle. For a bulbous section,
added mass shown in Fig. 15, had a little different
tendency from the above, and negative values of added
mass were appeared. This phenomenon was interpreted
as the flow direction near. The section were opposite
with that of oscillation. The wave exciting forces for
swaying, Fig.16, had mnon zero values in all wave
number regions.

6—3 Roll

Added mass moment of inertia and damping moment
for Lewis form and rectangular cylinder were shown
in Figs. 17~20. And for bulbous section in Figs.21
and 22. In those figures, it can be shown that the tend-
ency of hydrodynamic forces is similar to the case of
sway. The effects of sectional shape on hydrodynamic

forces become large in this case.
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Fig. 2. Added mass for rectangular cylinder in heave
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Fig.4. Added mass for rectangular cylinder
in heave
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Fig. 6. Added mass of bulbous section in heave Fig. 7. Wave exciting forces for bulbous section in heave
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Fig. 8. Added mass and damping coeff. for semi-circle Fig. 9. Added mass for semi-circle in sway
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Fig. 10. Damping coeff. for semi circle in sway Fig. 11. Added mass for Lewis form in sway
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Fig. 12. Damping coeff. for Lewis form in sway Fig. 13. Added mass for rectangular cylinder in
sway
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Fig. 17. ‘Added mass moment of Inertia for
rectangular cylinder in roll
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Fig. 18. Damping moment for rectangular Fig. 19. Added mass moment of inertia
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Fig. 20. Damping moment for Lewis form in roll Fig. 21. Added mass moment of inertia for
bulbous section in roll
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Fig. 22. Exciting force for bulbus section in roll

7. Conclusion

From above discussions, the author’s method seems

to give reasonable results.

The author is grateful to Professor Hwang, JH.,
for suggesting this topic, and Dr. Bai, X.J., Dr. Lee,
C.M., Dr. Issihiki, H. and Professor Maeda, H. for
their valuable discussions during the preparation of

this paper.
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