ON pc-RINGS

By A.K. Tiwary and S.A. Paramhans

In this paper rings over which all the cyclic modules are pseudo-injective, called here as pc-rings, are studied and it is shown that

(i) A ring R is left pc iff R/A is left pc for each ideal A of R.

(ii) A left pc-ring is self-pseudo-injective. Moreover, if R is noetherian then R/J is semi-simple artinian where J is the Jacobson radical of R.

(iii) Factor of a pc-ring is self-pseudo-injective. Conversely, if each factor of a duo ring is self-pseudo-injective then R is a pc-ring.

(iv) If a prime left Goldie ring R is pc then each quotient of R by a closed ideal is injective.

Throughout this paper R will denote a ring with unit and modules are unitary. $J(R)$ will stand for the Jacobson radical and $Z(R)$ for singular ideal of R. $M \triangle N$ will mean that M is an essential extension of N. An element m of a module M is said to be singular if $R \triangle (0: m)$. The module M is nonsingular if none of its non-zero elements is singular. A ring is said to be left Goldie if it satisfies ascending Chain Condition on annihilator left ideals and does not contain any infinite direct sum of left ideals. An R-module M is said to be pseudo injective if every R-monomorphism of each R-submodule of M into M can be extended to an R-endomorphism of M. A ring R is self-pseudo injective if it is pseudo injective as an R-module.

LEMMA 1. Let M be an R-module and let A be an ideal of R which annihilates M. Then M is a pseudo-injective R-module iff it is pseudo-injective as an R/A-module.

PROOF. Trivial, since under the above condition, we have $\text{Hom}_R (M, M) = \text{Hom}_{R/A} (M, M)$.

PROPOSITION 2. If R is a self pseudo-injective ring (with 1) then $J(R) = Z(R)$ and $R/J(R)$ is von Neumann regular.

PROOF. Suppose $E = \text{Hom}_R (R, R)$. Then since R has 1, the mapping
A. K. Tiwary and S. A. Paramhans

\[\theta : f \rightarrow f(1) \]
of \(E \) onto \(R \) is a ring isomorphism. Under this map \(\mathcal{L} \in R \) corresponds to

\[f : x \mapsto x \mathcal{L} \]

So, \(x \in \ker f \iff x \mathcal{L} = 0 \iff x \in (0 : \mathcal{L}) \)

Hence \(\ker f = (0 : \mathcal{L}) \).

Now, since \(R \) is a pseudo-injective \(R \)-module, we have, by [2, Theorem 4.2]:

\[J(E) = \{ f \in E/R \triangle \ker f \} \]

Due to the isomorphism we have

\[J(R) = \{ \mathcal{L} \in R/R \triangle (0 : \mathcal{L}) \} = Z(R) \]

Again, by the second part of the above cited theorem of [2] we know that \(E - J(E) \) is von Neumann regular. It follows that \(R/J(R) \) is von Neumann regular in view of the fact that \(\theta \) maps

\(\{ f \in E/R \triangle \ker f \} \) into \(Z(R) \)

which is shown to be \(J(R) \) because of the self-pseudo injectivity of \(R \).

DEFINITION 1. A ring \(R \) will be called left(right) \(pc \)-ring if every left(right) cyclic \(R \)-module is pseudo-injective. \(R \) is said to be \(pc \) if it is right and left \(pc \).

PROPOSITION 3. A ring \(R \) is left \(pc \) iff \(R/A \) is left \(pc \) for each two sided ideal \(A \) of \(R \).

PROOF. Let \(R \) be a left \(pc \) ring and \(A \) an ideal of \(R \). Let \(I/A \) be any left ideal of \(R/A \). Consider the \(R/A \)-module \((R/A)/(I/A) \). In view of the \(R \)-isomorphism

\[(R/A)/(I/A) \cong R/I \]

and the fact that \(I \) annihilates the module \(R/I \), \(A \) also annihilates the \(R \)-module \(R/I \). Therefore \(R/I \) may be considered as an \(R/A \)-module.

Now, \(R \) is left \(pc \Rightarrow (R/I) \) is \(R \)-pseudo-injective. But the ideal \(A \) annihilates the \(R \)-module \((R/I) \). So, by Lemma 1, \(R/I \) considered as an \(R/A \)-module is \(R/A \)-pseudo-injective. Hence any cyclic \(R/A \)-module is \(R/A \)-pseudo-injective. \(R/A \) is thus a \(pc \)-ring.

The converse is obvious.

PROPOSITION 4. Any left \(pc \) ring \(R \) is self-pseudo-injective. Moreover, if \(R \) is noetherian then \(R/J(R) \) is semi-simple artinian.

PROOF. Since \(R^R \) is generated by the identity, it is a cyclic left \(R \)-module. \(R^R \) is therefore, self-pseudo-injective.
Next, self-pseudo-injectivity of \(R \) implies von Neumann regularity of \(R/J(R) \) (Proposition 2). Moreover, \(R \) is noetherian \(\implies R/J(R) \) is noetherian. Thus, since \(R/J(R) \) is noetherian and regular, it is semi-simple artinian.

THEOREM 5. Factor of a pc-ring \(R \) is self-pseudo-injective. Conversely, if each factor of a duo ring \(R \) is self-pseudo injective then \(R \) is a pc-ring.

PROOF. Let \(A \) be a left ideal of a pc ring \(R \). Then \(R/A \) is pc by Proposition 3 and hence self pseudo injective by Proposition 4.

Conversely, suppose that each factor ring of \(R \) is self-pseudo-injective. Let \(M \) be a cyclic \(R \)-module. Then \(M \cong R/A \) for some left ideal \(A \) of \(R \). By assumption, \(R/A \) is \(R/A \)-pseudo-injective. Hence, by Lemma 1, \(R/A \) is \(R \)-pseudo-injective. Thus \(R \) is pc.

PROPOSITION 6. Let \(R \) be a pc ring which is prime left Goldie. Then any quotient of \(R \) by a closed ideal is injective.

PROOF. \(R \) is pc \(\Rightarrow R/I \) is pseudo-injective.

Furthermore, \(R \) is prime left Goldie implies \(R \) is nonsingular.

Now, \(Z(R)=0 \) and \(I \) is closed ideal of \(R \)

\[\Rightarrow Z(R/I)=0 \quad \text{[1, Lemma 2.3]} \]

\[\Rightarrow R/I \text{ is torsionfree in Levy's sense [3, Lemma 4.1]} \]

Thus, \(R/I \), being a Levy-torsionfree pseudo-injective module, is injective by [3, Theorem 4.7].

Banaras Hindu University
Varanasi 221005
India

REFERENCES

