Kyungpook Math. J. Volume 17, Number 2 December, 1977

7

By William Dunham

1. Introduction

Levine [4] defines a subset of a topological space to be generalized closed (g-closed) if its closure is contained in each of its neighborhoods, and he shows that g-closed sets possess many of the familiar and important properties of closed sets. Of some interest, then, are the $T_{\frac{1}{2}}$ -spaces — the spaces in which the closed sets and the g-closed sets coincide. This paper examines such spaces, furnishing characterizations independent of the notion of g-closed sets; investigating their behavior with respect to subspaces, transformations, and products; and providing structure theorems for minimal and maximal $T_{\frac{1}{2}}$ topologies on a given set.

2. Definitions and characterizations

DEFINITION 2.1. (Levine, [4]) In a topological space X, $A \subset X$ is g-closed if $c(A) \subset O$ when $A \subset O$ and O is open, where "c" denotes the closure operator.

DEFINITION 2.2. (Levine, [4]) X is a $T_{\frac{1}{2}}$ -space iff every g-closed subset of X

is closed.

DEFINITION 2.3. (Thron, [5]) X is a T_D -space iff the derived set of each singleton is closed.

DEFINITION 2.4. X is a *door space* iff each subset of X is either open or closed. (See Kelley, [3])

THEOREM 2.5. X is $T_{\frac{1}{2}}$ iff for each $x \in X$, either $\{x\}$ is open or $\{x\}$ is closed. PROOF. Necessity: Suppose X is $T_{\frac{1}{2}}$ and for some $x \in X$, $\{x\}$ is not closed. Since X is the only neighborhood of $\mathcal{C}\{x\}$ (" \mathcal{C} " denotes the complement operator), $\mathcal{C}\{x\}$ is g-closed and thus closed. Hence $\{x\}$ is open.

Sufficiency: Let $A \subset X$ be *g*-closed with $x \in c(A)$. If $\{x\}$ is open, $\phi \neq \{x\} \cap A$. Otherwise $\{x\}$ is closed and $\phi \neq c(x) \cap A = \{x\} \cap A$ by Levine [4], Theorem 2.2. In either case $x \in A$ and so A is closed.

162

William Dunham

COROLLARY 2.6. X is $T_{\frac{1}{2}}$ iff every subset of X is the intersection of all open sets and all closed sets containing it.

PROOF. Necessity: Let X be $T_{\frac{1}{2}}$ with $B \subset X$ arbitrary. Then $B = \bigcap \{ \mathcal{C} \{x\} : x \notin B \}$, an intersection of open and closed sets by Theorem 2.5. The result follows. Sufficiency: For each $x \in X$, $\mathcal{C} \{x\}$ is the intersection of all open sets and all

closed sets containing it. Thus $\mathcal{C}\{x\}$ is either open or closed and X is $T_{\frac{1}{2}}$.

COROLLARY 2.7. (a) [4, Theorem 5.3]: A T_1 -space is $T_{\frac{1}{2}}$

(b) A door space is $T_{\frac{1}{2}}$. PROOF. Both results follow form Theorem 2.5.

EXAMPLE 2.8. Neither implication in the previous corollary is reversible. For if $X = \{a, b, c, d\}$ and $\mathcal{T} = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$, then (X, \mathcal{T}) is a $T_{\frac{1}{2}}$ -space by Theorem 2.5. But (X, \mathcal{T}) is not T_1 since $\{a\}$ is not closed, nor is it a door space, since $\{a, c\}$ is neither open nor closed.

THEOREM 2.9. If X is $T_{\frac{1}{2}}$, then X is T_D (and thus T_0).

PROOF. For $x \in X$, $\{x\}$ is either open or closed. If $\{x\}$ is open, $\{x\}' = c(x) \setminus \{x\}$ is closed, while if $\{x\}$ is closed, $\{x\}' = \phi$.

EXAMPLE 2.10. A T_D -space need not be $T_{\frac{1}{2}}$. For, if $X = \{a, b, c\}$ and $\mathscr{T} = \{\phi, \{a, b\}, X\}$, then (X, \mathscr{T}) is not $T_{\frac{1}{2}}$ since $\{b\}$ is neither open nor closed. But (X, \mathscr{T}) is T_D since $\{a\}' = \{b, c\}, \{b\}' = \{c\}$, and $\{c\}' = \phi$, all of which are closed.

3. Subspaces and transformations

THEOREM 3.1. If X is $T_{\frac{1}{2}}$ with $Y \subset X$, then Y is $T_{\frac{1}{2}}$.

PROOF. For $y \in Y$, $\{y\}$ is either X-open or X-closed, and thus $\{y\}$ is either Y-open or Y-closed.

EXAMPLE 3.2. Before considering conditions under which the image of a $T_{\frac{1}{2}}$ -space is $T_{\frac{1}{2}}$, we introduce the following example: Let $X = \{1, 2, 3, \cdots\}$ be the natural numbers with topology $\mathscr{T} = \{\phi, \{1\}\} \cup \{U: 1 \in U \text{ and } \mathcal{C}U \text{ is finite}\}$, and let $Y = \{a, b, c\}$ with topology $\mathscr{T} = \{\phi, \{a\}, Y\}$. Define $f: X \to Y$ by f(1) = a

 $f(2n) = b \ for \ n = 1, 2, \cdots$

$T_{\frac{1}{2}}$ -Spaces 163 $f(2n+1)=c \text{ for } n=1,2,\cdots$ Then f is continuous, open, and onto. But by Theorem 2.5, (X, \mathcal{F}) is $T_{\frac{1}{2}}$ while (Y, \mathcal{V}) is not. THEOREM 3.3. If X is $T_{\frac{1}{2}}$ and $f: X \to Y$ is continuous, closed, and onto, then Y is T_1 .

PROOF. Let $B \subset Y$ be g-closed. By Levine [4], Theorem 6.3, $f^{-1}[B]$ is g-closed and thus closed in X. Hence $B = f[f^{-1}[B]]$ is closed in Y, and Y is $T_{\frac{1}{2}}$.

THEOREM 3.4. Let (X, \mathscr{F}) be $T_{\frac{1}{2}}$ and let $f: X \to Y$ be an open, onto map (not necessarily continuous) such that for each $y \in Y$, $f^{-1}[\{y\}]$ is a finite set. Then (Y, \mathscr{U}) is $T_{\frac{1}{2}}$.

PROOF. We shall use Theorem 2.5. Let $y \in Y$. By hypothesis, $f^{-1}[\{y\}] = \{x_1, x_2, \dots, x_n\}$. If, for some i, $\{x_i\} \in \mathscr{T}$ then $\{y\} = \{f(x_i)\} \in \mathscr{U}$ since f is open. Otherwise, $\mathscr{C}\{x_i\} \in \mathscr{T}$ for all $i=1, 2, \dots, n$ and thus $\mathscr{C}\{y\} = f[\mathscr{C}\{x_1\} \cap \cdots \cap \mathscr{C}\{x_n\}] \in \mathscr{U}$. It follows that (Y, \mathscr{U}) is $T_{\frac{1}{2}}$.

COROLLARY 3.5. The homeomorphic image of a $T_{\frac{1}{2}}$ -space is $T_{\frac{1}{2}}$.

4. Products

THEOREM 4.1. Let $X = \times \{X_{\alpha} : \alpha \in \Delta\}$. Then if X is $T_{\frac{1}{2}}$, X_{α} is $T_{\frac{1}{2}}$ for all $\alpha \in \Delta$.

PROOF. X contains a subspace homeomorphic to X_{α} . Use Theorem 3.1 and Corollary 3.5.

REMARK 4.2. In contrast to the T_0 , T_1 , and T_2 separation axioms, the converse of Theorem 4.1 is false. See Levine [4], Example 7.4. In order to derive necessary and sufficient conditions under which a product space is $T_{\frac{1}{2}}$, we distinguish two cases — when the product is infinite (that is, when there are an infinite number of non-singleton factors) and when the product is finite. We begin with a simple lemma:

LEMMA 4.3 Let $X = X \{X_{\alpha} : \alpha \in \Delta\}$ where Δ is infinite. Then X is $T_{\frac{1}{2}}$ iff X is T_1 .

164 William Dunham

The sufficiency is Corollary 2.7 (a). To prove necessity, let $x \in X$ PROOF. and note that $\{x\}$ is not open in the product topology since there are infinitely many non-singleton factors in X. By Theorem 2.5, $\{x\}$ is closed and X is T_1 .

THEOREM 4.4. Let $X = X \{X_{\alpha}: \alpha \in \Delta\}$ where Δ is infinite. Then X is $T_{\frac{1}{2}}$ iff X_{α} is T_1 for all $\alpha \in \Delta$.

PROOF. Apply the previous lemma and the fact that a product space is T_1 iff each factor is T_{1} .

REMARK 4.5. Theorem 4.4 shows that the distinction between $T_{\frac{1}{2}}$ and T_{1} vamishes in infinite product spaces. A different situation exists in the case of finite products, where we can relax the T_1 condition on one of the factors if we put severe restrictions upon the others:

THEOREM 4.6. Let $(X, \mathcal{T}) = \times \{(X_i, \mathcal{T}): i=1, 2, \dots, n\}$. Then (X, \mathcal{T}) is $T_{\frac{1}{2}}$ iff one of the following conditions holds: (a) (X_i, \mathcal{T}_i) is T_1 for all *i*.

-07

(b) For some k,
$$(X_k, \mathscr{T}_k)$$
 is $T_{\frac{1}{2}}$ but not T_1 , while (X_i, \mathscr{T}_i) is discrete for all $i \neq k$.

PROOF. Necessity: Suppose (X, \mathscr{T}) is $T_{\frac{1}{2}}$ and (a) does not hold. Then for some k, (X_k, \mathcal{T}_k) is not T_1 , although (X_k, \mathcal{T}_k) is $T_{\frac{1}{2}}$ by Theorem 4.1. Fix $i \neq k$. We assert (X_i, \mathscr{I}_i) is discrete. For otherwise, there is an $x_i \in X_i$ such that $\{x_i\} \notin \mathcal{T}_i$. Moreover, for some $x_k \in X_k$, $\{x_k\}$ is not \mathcal{T}_k -closed. Define $x^* \in \mathcal{T}_k$ X by

 $x^*(k) = x_b$ $x^*(i) = x_i$ $x^*(j) \in X_j$ arbitrary for $j \neq k, i$. If $\{x^*\} \in \mathcal{T}$, then $P_i[\{x^*\}] = \{x_i\} \in \mathcal{T}$, a contradiction; and if $\{x^*\}$ is \mathcal{T} -closed, then $\{x_{k}\}$ is \mathcal{T}_{k} -closed, again a contradiction. By Theorem 2.5 we conclude (X_i, \mathcal{T}_i) is discrete.

Sufficiency: If (a) holds, (X, \mathscr{T}) is T_1 and thus $T_{\frac{1}{2}}$. If (b) holds, then for some k, (X_k, \mathscr{T}_k) is $T_{\frac{1}{2}}$ but not T_1 , while (X_i, \mathscr{T}_i) is discrete for $i \neq k$. Let $x \in X$. If $\{x(k)\} \in \mathcal{T}_k$, then $\{x\} = \{X \{x(j): 1 \le j \le n\}\} \in \mathcal{T}$. Otherwise $\{x(k)\}$ is

$$T_{\frac{1}{2}}$$
-Spaces
 \mathscr{T}_{k} -closed and thus $\{x\}$ is \mathscr{T} -closed. Hence (X, \mathscr{T}) is $T_{\frac{1}{2}}$.
5. The $T_{\frac{1}{2}}$ property and the lattice of topologies
THEOREM 5.1. If (X, \mathscr{T}) is $T_{\frac{1}{2}}$ and $\mathscr{T} \subset \mathscr{U}$, then (X, \mathscr{U}) is $T_{\frac{1}{2}}$.
PROOF. For $x \in X$, either $\{x\} \in \mathscr{T} \subset \mathscr{U}$ or $\mathscr{C}\{x\} \in \mathscr{T} \subset \mathscr{U}$.

165

EXAMPLE 5.2. The $T_{\frac{1}{2}}$ property is not transferred to coarser topologies nor even to infima. For, if $X = \{a, b\}$ with $\mathcal{T} = \{\phi, \{a\}, X\}$ and $\mathcal{U} = \{\phi, \{b\}, X\}$, then (X, \mathcal{T}) and (X, \mathcal{U}) are $T_{\frac{1}{2}}$ while $(X, \mathcal{T} \cap \mathcal{U})$ is not. However, we can prove:

THEOREM 5.3. If $(X_{\alpha}, \mathcal{T}_{\alpha})$ is $T_{\frac{1}{2}}$ for all $\alpha \in \Delta$, and if $\{\mathcal{T}_{\alpha} : \alpha \in \Delta\}$ is a totally ordered family with respect to inclusion, then $(X, \cap \{\mathcal{T}_{\alpha} : \alpha \in \Delta\})$ is $T_{\frac{1}{2}}$.

PROOF. Let $x \in X$ and suppose $\{x\} \notin \cap \{\mathcal{X} : \alpha \in \Delta\}$. Then $\{x\} \notin \mathcal{F}_{\beta}$ for some $\beta \in \Delta$ and so $\mathcal{C}\{x\} \in \mathcal{F}_{\beta}$. We assert that $\mathcal{C}\{x\} \in \mathcal{F}_{\alpha}$ for all $\alpha \in \Delta$. For if $\alpha \in \Delta$ and $\mathcal{F}_{\beta} \subset \mathcal{F}_{\alpha}$, then $\mathcal{C}\{x\} \in \mathcal{F}_{\alpha}$. Otherwise, by total ordering, $\mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta}$ and if $\mathcal{C}\{x\} \notin \mathcal{F}_{\alpha}$, then $\{x\} \in \mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta}$, a contradiction. Thus $\mathcal{C}\{x\} \in \cap \{\mathcal{F}_{\alpha} : \alpha \in \Delta\}$ and so $(X, \cap \{\mathcal{F}_{\alpha} : \alpha \in \Delta\})$ is $T_{\frac{1}{2}}$.

COROLLARY 5.4. For \mathcal{T} any topology on X, there is a topology \mathcal{U} on X such

that:

(a)
$$\mathcal{T} \subset \mathcal{U}$$

(b) (X, \mathcal{U}) is $T_{\frac{1}{2}}$.

and

(c) If (X, \mathscr{V}) is $T_{\frac{1}{2}}$ for $\mathscr{T} \subset \mathscr{V} \subset \mathscr{U}$, then $\mathscr{V} = \mathscr{U}$.

PROOF. Let $\alpha = \{\mathscr{T}_{\alpha} : \alpha \in \Delta\}$ be the indexed family of all $T_{\frac{1}{2}}$ topologies on X finer than \mathscr{T} . We note that $\alpha \neq \phi$ since the discrete topology is $T_{\frac{1}{2}}$. Moreover, if $\{\mathscr{T}_{\alpha} : \alpha \in \Delta^*\}$ is a subset of α totally ordered with respect to inclusion, then $\mathscr{T}^* = \bigcap \{\mathscr{T}_{\alpha} : \alpha \in \Delta^*\}$ is $T_{\frac{1}{2}}$ with $\mathscr{T} \subset \mathscr{T}^*$. Thus $\mathscr{T}^* \in \alpha$ and by Zorn's Lemma, α contains a minimal element \mathscr{U} which satisfies properties (a)-(c) above.

6. Minimal $T_{\frac{1}{2}}$ topologies

REMARK 6.1. Letting \mathcal{T} be the indiscrete topology in Corollary 5.4, we see that on any set X there is at least one topology minimal with respect to the

166 William Dunham

property of being $T_{\frac{1}{2}}$.

We shall determine the structure of such topologies, although the cases where X is infinite and X is finite must be treated separately. Some lemmas are necessary:

LEMMA 6.2. Suppose X contains more than one point and \mathcal{T} is the discrete topology on X. Then \mathcal{T} is not a minimal $T_{\frac{1}{2}}$ topology on X. PROOF. Fix $x \neq y$ in X and define the $T_{\frac{1}{2}}$ topology $\mathscr{U} = \{U: \ U = \phi \text{ or } x \in U\} \subsetneq \mathcal{T}$.

LEMMA 6.3. Let X be finite with $(X, \mathscr{U}) T_{\frac{1}{2}}$. Suppose there is a $c \in X$ such that $\{c\}$ is closed and $\{x \in X: \{x\} \in \mathscr{U}\} \subset \{c\}$. Then \mathscr{U} is discrete.

PROOF. $\{c\}$ is closed, and for $x \neq c$, $\{x\} \notin \mathcal{U}$ and thus $\{x\}$ is closed by Theorem 2.5. It follows that (X, \mathcal{U}) is T_1 and thus discrete.

LEMMA 6.4. Let $X \neq \phi$ with $A \subset X$ and define $\mathscr{U} = \{U: U \subset A, \text{ or } A \subset U \text{ and } \mathscr{C}U \text{ is finite}\}$. Then \mathscr{U} is a $T_{\frac{1}{2}}$ topology on X.

PROOF. Apply Theorem 2.5.

LEMMA 6.5. Suppose (X, \mathcal{T}) is a minimal $T_{\frac{1}{2}}$ -space where X contains more than one point. Define

 $A = \{x: \{x\} \in \mathcal{T} and \ \mathcal{C}\{x\} \notin \mathcal{T}\}$

 $B = \{x: \{x\} \notin \mathcal{T} \text{ and } \mathcal{C}\{x\} \in \mathcal{T}\}$ $C = \{x: \{x\} \in \mathcal{T} \text{ and } \mathcal{C}\{x\} \in \mathcal{T}\}$

Then:

- (a) $X = A \cup B \cup C$
- (b) *B≠*∮

and

(c) *C*= ϕ

PROOF.

- (a) This is a restatement of Theorem 2.5.
- (b) If $B = \phi$, \mathcal{T} is discrete, contradicting Lemma 6.2.

(c) Suppose $c \in C$ and let $A^* = (A \cup C) \setminus \{c\}$.

Defining $\mathscr{U} = \{U: U \subset A^*$, or $A^* \subset U$ and $\mathscr{C}U$ is finite}, we conclude from Lemma 6.4 that (X, \mathscr{U}) is $T_{\frac{1}{2}}$ and assert that $\mathscr{U} \subset \mathscr{T}$. For, if $U \in \mathscr{U}$ and $U \subset A^*$, then $U = \bigcup \{\{x\}: x \in A^* \cap U\} \in \mathscr{T}$. Alternately, if $U \not\subset A^*$, then $A^* \subset U$ with $\mathscr{C}U = \{x_1, \dots, U\}$.

$$T_{\frac{1}{2}}$$
-Spaces 167

 x_n . But for each *i*, $x_i \notin A^*$ and thus either $x_i = c$ or $\{x_i\} \notin \mathcal{T}$. In either case, $\{x_i\}$ is \mathcal{T} -closed and so $U = \bigcap \{\mathcal{C}\{x_i\}: 1 \le i \le n\} \in \mathcal{T}$. Hence $\mathcal{U} \subset \mathcal{T}$ and, by minimality, $\mathcal{U} = \mathcal{T}$. Since $\{c\} \in \mathcal{T} = \mathcal{U}$, either $\{c\} \subset A^*$ or $A^* \subset \{c\}$ with $\mathcal{O}\{c\}$ finite. The first possibility is dismissed by the definition of A^* . In the second case, we conclude X is finite and $A^* = \phi$. Thus $\{x: \{x\} \in \mathcal{U}\} = \{x: \{x\} \in \mathcal{T}\}$ $=A \cup C \subset \{c\}$. By Lemma 6.3, $\mathscr{U} = \mathscr{T}$ is discrete, contradicting Lemma 6.2. We thus reject the original hypothesis that $C \neq \phi$.

THEOREM 6.6. Suppose X is an infinite set. Then \mathcal{T} is a minimal $T_{\frac{1}{2}}$ topology on X iff there is an $A \subsetneq X$ such that $\mathscr{T} = \{O: O \subseteq A, or A \subseteq O and \emptyset O is$ finite}.

PROOF. Necessity: Suppose \mathscr{T} is minimal $T_{\frac{1}{2}}$ and define A and B as in Lemma 6.5. Then $X = A \cup B$ with $A \subsetneq X$. Define $\mathcal{U} = \{0: O \subseteq A, \text{ or } A \subseteq O \text{ and } \mathcal{O} O \text{ is } A \subseteq A \in A \in A \}$ finite]. Then (X, \mathscr{U}) is $T_{\frac{1}{2}}$ by Lemma 6.4 and we need only show $\mathscr{T} = \mathscr{U}$. But, if $0 \in \mathcal{U}$, either $0 \subset A$ or $A \subset O$ with $\mathcal{O}O$ finite. In the first case, $0 \in \mathcal{F}$ clearly. Otherwise, $\mathcal{O} = \{x_1, \dots, x_n\}$ with $x_i \in B$ for all *i*, proving $O = \bigcap \{\mathcal{O} \{x_i\} : 1 \le i \le n\} \in \mathbb{C}$ \mathcal{T} . Hence $\mathcal{U} \subset \mathcal{T}$, and by minimality it follows that $\mathcal{U} = \mathcal{T}$. Sufficiency: If $\mathscr{T} = \{0: O \subset A, \text{ or } A \subset O \text{ and } \mathcal{C}O \text{ is finite} \}$ for some $A \subsetneq X$, then (X, \mathscr{T}) is $T_{\frac{1}{2}}$ and we must show minimality. Suppose (X, \mathscr{U}) is $T_{\frac{1}{2}}$ with $\mathscr{U} \subset \mathscr{T}$. Define $A^* \subset X$ by $A^* = \{x: \{x\} \in \mathbb{Z}\}$. We assert that $A = A^*$. For, if $x \in A^*$, $\{x\} \in \mathbb{Z}\}$ $\mathcal{U} \subset \mathcal{T}$ and thus either $\{x\} \subset A$ or $A \subset \{x\}$ with $\mathcal{O}\{x\}$ finite. The latter possibility is dismissed since X is infinite. Thus $x \in A$ and $A^* \subset A$. Conversely, suppose $x \in A$ but $x \notin A^*$. Then $\{x\} \notin \mathcal{U}$ and so $\mathcal{C}\{x\} \in \mathcal{U} \subset \mathcal{T}$. Consequently, either $\mathcal{C}\{x\} \subset A$ or $A \subseteq \mathcal{C}{x}$. In the first case, $X = {x} \cup \mathcal{C}{x} \subseteq A \subseteq X$, while in the second case, $x \in A \subset \mathcal{O}\{x\}$ and both are contradictions. We conclude $A = A^*$. But now, for $O \in A$ \mathscr{T} , if $O \subset A$, then $O \subset A^*$ implies $O \in \mathscr{U}$. Otherwise, $A \subset O$ with $\mathscr{C}O = \{x_1, x_2, \dots, A \in O\}$ x_{i} . Then for each *i*, $\{x_{i}\} \notin A = A^{*}$ and so $\mathcal{C}\{x_{j}\} \in \mathcal{U}$, implying $O \in \mathcal{U}$. Thus \mathcal{T} $\subset \mathscr{U}$ and it follows that \mathscr{T} is a minimal $T_{\frac{1}{2}}$ topology.

REMARK 6.7. The previous result shows that the minimal $T_{\frac{1}{2}}$ topologies are composed of some "very small" open sets (the subsets of A) and some "very large" ones (supersets of A with finite complements). A similar result for finite X requires only a minor modification:

THEOREM 6.8. Suppose X is a finite set containing more than one point. Then

William Dunham

168

 \mathcal{T} is a minimal $T_{\frac{1}{2}}$ topology on X iff there is an $\phi \neq A \subsetneq X$ such that $\mathcal{T} = \{O: O \subset A \text{ or } A \subset O\}$.

PROOF. Necessity: Again define A and B as in Lemma 6.5 and note that if $A=\phi$, \mathcal{T} is cofinite and thus discrete, a contradiction. The remainder of the necessary condition follows exactly as in Theorem 6.6.

Sufficiency: Suppose that for some $\phi \neq A \subsetneq X$, $\mathscr{T} = \{0: 0 \subset A \text{ or } A \subset 0\}$. As in the

previous theorem, let (X, \mathscr{U}) be $T_{\frac{1}{2}}$ with $\mathscr{U} \subset \mathscr{T}$ and define $A^* = \{x: \{x\} \in \mathscr{U}\}$. We assert $A^* \subset A$. For if $x \in A^*$, $\{x\} \in \mathscr{U} \subset \mathscr{T}$ and thus either $\{x\} \subset A$ or $\phi \neq A \subset \{x\}$. In either case, $x \in A$ and so $A^* \subset A$. We now prove $A \subset A^*$ and the minimality of \mathscr{T} exactly as in Theorem 6.6.

COROLLARY 6.9. If \mathcal{T} is a minimal $T_{\frac{1}{2}}$ topology on X, then (X, \mathcal{T}) is compact and connected.

PROOF. The result follows directly from the two previous theorems.

7. Maximal $T_{\frac{1}{2}}$ topologies

REMARK. 7.1. Fröhlich [1] defines an ultratopology to be a maximal, nondiscrete topology and derives a structure theorem for ultratopologies which is used by Girhinny [2] to prove that each ultratopology is a door space (see Definition 2.4). We can thus prove:

THEOREM 7.2. \mathcal{T} is a maximal $T_{\frac{1}{2}}$ topology on X iff \mathcal{T} is an ultratopology.

PROOF. Necessity: If \mathscr{T} is maximal $T_{\frac{1}{2}}$ and $\mathscr{T} \subsetneq \mathscr{U}$, then \mathscr{U} is $T_{\frac{1}{2}}$ by Theorem 5.1, and thus \mathscr{U} is discrete.

Sufficiency: If \mathscr{T} is an ultratopology, then (X, \mathscr{T}) is a door space and is $T_{\frac{1}{2}}$ by Corollary 2.7. Hence \mathscr{T} is a maximal $T_{\frac{1}{2}}$ topology on X.

Hanover College

REFERENCES

 [1] Fröhlich, O., Das Halbordnungssystem der Topologischen Raume auf einer Menge, Mathematische Annalen, Vol. 156 (1964), pp. 79-95.

[2] Girhinny, J., Minimal and Maximal Topologies, McMaster Mathematical Report

T <u>1</u>-Spaces 169

No. 32 (1970).

[3] Kelley, J., General Topology. Van Nostrand, New York, 1955.

[4] Levine, N., Generalized Closed Sets in Topology, Rendiconti del Circolo Matematico.

di Palermo, Vol. 19 (1970), pp.89-96.

[5] Thron, W., Topological Structures. Holt, Rinehart, and Winston, New York, 1966.