CHARACTERIZATIONS OF SPACES USING T_{0}-IDENTIFICATION SPACES

By Charles Dorsett

1. Introduction

In this paper T_{0}-identification spaces are used to characterize spaces which are R_{0}, R_{1}, regular, completely regular, normal R_{0}, or pseudometrizable, where the T_{1} axiom is not included in the definitions of regular, completely regular, and normal. Regular T_{1}, completely regular T_{1}, and normal T_{1} will be denoted by $T_{3}, T_{3 \frac{1}{2}}$, and T_{4}, respectively. Listed below are definitions and theorems that will be utilized in this paper.

DEFINITION 1.1. A topological space (X, T) is R_{0} if and only if for each closed set C and for each $x \notin C, C \cap \overline{\{x\}}=\phi$ [1].

THEOREM 1.1. The following are equivalent: (a) (X, T) is R_{0}, (b) if $O \in T^{*}$ and $x \in O$, then $\overline{\{x\}} \subset O$, and (c) for $x, y \in X$, either $\overline{\{x\}}=\overline{\{y\}}$ or $\overline{\{x\}} \cap \overline{\{y\}}=\phi$ [1].

DEFINITION 1.2. If \sim is an equivalence relation on (X, T), then the \sim identification space of (X, T) is ($\mathscr{D} \sim, \mathscr{Q} \sim$), where $\mathscr{D} \sim$ is the set of equivalence classes of \sim and $\mathscr{Q} \sim$ is the decomposition topology on $\mathscr{D} \sim[3]$.

DEFINITION 1.3. Let \sim° be the equivalence relation on (X, T) defined by $x \sim^{0}$ y if and only if $\overline{\{x\}}=\overline{\{y\}}$. The T_{0}-identification space of (X, T) is the \sim^{0}. identification of (X, T), which is T_{0}. Let $X_{0}=\mathscr{D} \sim^{\circ}$, let $S_{0}=\mathscr{O} \sim^{\circ}$, and let $P:(X, T) \rightarrow\left(X_{0}, S_{0}\right)$ be the natural map [3].

DEFINITION 1.4. For a space (X, T) let \sim^{\prime} be the relation in $X \times X$ defined by $x \sim^{\prime} y$ if and only if $x \in \overline{\{y\}}$. Then \sim^{\prime} is not always an equivalence relation on X and $\sim^{\circ} \subset \sim^{\prime}$.

DEFINITION 1.5. A space (X, T) is R_{1} if and only if for $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$ there exist disjoint open sets U and V such that $\overline{\{x\}} \subset U$ and $\overline{\{y\}} \subset V$ [1].

THEOREM 1.2. A space is T_{1} if and only if it is R_{0} and T_{0} and a space is T_{2}.
if and only if it is R_{1} and T_{0} [1].
THEOREM 1.3. A space (X, T) is R_{1} if and only if $\left(X_{0}, S_{0}\right)$ is T_{2} [4].

2. Characterizations

THEOREM 2.1. The following are equivalent: (a) (X, T) is R_{0}, (b) \sim^{\prime} is an equivalence relation on X, (c) ($\left.\mathscr{D} \sim^{\prime}, \mathscr{Q} \sim^{\prime}\right)=\left(X_{0}, S_{0}\right), X_{0}=\{\overline{\{x\}} \mid x \in X\}, \quad\left(X_{0}\right.$, S_{0}) is T_{1}, P is closed open, and $P^{-1}(P(0))=0$ for all $0 \in T$, (d) $\left(X_{0}, S_{0}\right)$ is R_{0}, and (e) $\left(X_{0}, S_{0}\right)$ is T_{1}.

Proof. (a) implies (b): If $(x, y) \in \mathcal{N}^{\prime}$, then $x \in \overline{\{y\}}$ and $\overline{\{x\}} \cap \overline{\{y\}} \neq \phi$, which implies $\overline{\{x\}}=\overline{\{y\}}$ and $(x, y) \in \sim^{\circ}$. Hence $\sim^{\prime}=\sim^{\circ}$, which is an equivalence relation.
(b) implies (c): If $x \in X$ and C_{x} is the equivalence class of \sim^{\prime} containing x, then $C_{x}=\overline{\{x\}}$. Thus $\{\overline{\{x\}} \mid x \in X\}$ is a decomposition of X, which implies $(X$, T) is R_{0}. By the argument above $\sim^{\prime}=\sim^{\circ}$, and thus $\left(\mathscr{D} \sim^{\prime}, \mathscr{Q} \sim^{\prime}\right)=\left(X_{0}, S_{0}\right)$ and $\left.X_{0}=\{\overline{\{x}\} \mid x \in X\right\}$. If $0 \in T$, then $P^{-1}(P(0))=\bigcup_{x \in 0} \overline{\{x\}}=0$, which implies $P(0)$ $\in S_{0}$, and thus P is open. For C closed in $X, P(C)=X_{0} \backslash P(X \backslash C)$, which is closed, and thus P is closed. If $\left\{\overline{x\}} \in X_{0}\right.$, then $\left.\overline{\{\overline{x x}\}}=P \overline{(\{x\}}\right)=P(\overline{\{x\}})=\{\overline{x\}}\}$, which implies (X_{0}, S_{0}) is T_{1}.
(c) implies (d): Since every T_{1} space is R_{0}, then (X_{0}, S_{0}) is R_{0}.
(d) implies (e): Since (X_{0}, S_{0}) is R_{0} and T_{0}, then (X_{0}, S_{0}) is T_{1}.
(e) implies (a): Let $\mathrm{x} \in X$ and let C_{x} be the equivalence class of \sim° containing x. Then $C_{x} \subset \overline{\{x\}}$. Since $\left\{C_{x}\right\}$ is closed in X_{0}, then $x \in C_{x}=P^{-1}\left(\left\{C_{x}\right\}\right)$, which is closed, and thus $\overline{\{x\}} \subset C_{x}$ and $C_{x}^{\prime}=\overline{\{x\}}$. Hence $X_{0}=\{\overline{\{x\}} \mid x \in X\}$, which implies (X, T) is R_{0}.

The following corollary can be obtained by using Theorem 1.3 and Theorem 1.2.

COROLLARY 2.1. A space (X, T) is R_{1} if and only if $\left(X_{0}, S_{0}\right)$ is R_{1}.
Note that if (X, T) is R_{0}, then $\overline{\{x\}}$ compact for all $x \in X$.
THEOREM 2.2. The following are equivalent: (a) (X, T) is regular, (b) (X_{0}, $\left.S_{0}\right)$ is regular, and (c) $\left(X_{0}, S_{0}\right)$ is T_{3}.

Proof. (a) implies (b): Since (X, T) is regular, then (X, T) is R_{0}. By Theorem 2.1, (X_{0}, S_{0}) is an upper semi-continuous decomposition of X into
compact sets and since (X, T) is regular, then (X_{0}, S_{0}) is regular [2].
(b) implies (c): Since (X_{0}, S_{0}) is regular T_{0}, then (X_{0}, S_{0}) is T_{3}.
(c) implies (a): By Theorem 2.1, $X_{0}=\{\overline{\{x\}} \mid x \in X\}, P$ is open, and $P^{-1}(P(0))$ $=0$ for all $0 \in T$. Let $0 \in T$ and let $x \in 0$. Then $\overline{\{x\}} \in P(0)$, which is open in X_{0}. Thus there exists an open set \mathscr{V} such that $\overline{\{x\}} \in \mathscr{V} \subset \overline{\mathscr{V}} \subset P(0)$, which implies $x \in P^{-1}(\mathscr{V}) \subset P^{-1}(\overline{\mathscr{V}}) \subset 0$. Hence (X, T) is regular.

THEOREM 2.3. The following are equivalent: (a) (X, T) is completely regular, (b) $\left(X_{0}, S_{0}\right)$ is completely regular, and (c) $\left(X_{0}, S_{0}\right)$ is $T_{3 \frac{1}{2}}$.

PROOF (a) implies (b): Since (X, T) is completely regular, then (X, T) is \boldsymbol{R}_{0}. By Theorem 2.1, $X_{0}=\{\overline{\{x\}} \mid x \in X\}$ and P is open. Let \mathscr{C} be closed in X_{0} and let $\overline{\{x\}} \nsubseteq \mathscr{C}$. Then $P^{-1}(\mathscr{C})$ is closed in X and $x \notin P^{-1}(\mathscr{C})$ and there exists a continuous function $f:(X, T) \rightarrow[0,1]$ such that $f(x)=0$ and $f\left(P^{-1}(\mathscr{C})\right)=1$. Let $g:\left(X_{0}, S_{0}\right) \rightarrow[0,1]$ defined by $g(\overline{\{y\}})=f(y)$. Then $g(\overline{\{x\}})=0$ and $g(\mathscr{C})=1$. If 0 is open in $[0,1]$, then $f^{-1}(0)$ is open in X and $g^{-1}(0)=P\left(f^{-1}(0)\right)$ is open in X_{0}, which implies g is continuous. Hence, $\left(X_{0}, S_{0}\right)$ is completely regular.
(b) implies (c): Since (X_{0}, S_{0}) is completely regular T_{0}, then (X_{0}, S_{0}) is $T_{3 \frac{1}{2}}$.
(c) implies (a): By Theorem 2.1, $X_{0}=\{\overline{\{x\}} \mid x \in X\}$ and P is closed. Let C be closed in X and let $x \notin C$. Then $P(C)$ is closed in X_{0} and $P(x) \notin P(C)$ and there exists a continuous function $f:\left(X_{0}, S_{0}\right) \rightarrow[0,1]$ such that $f(P(x))=0$ and $f(P(C))$ $=1$. Then $f \circ P:(X, T) \rightarrow[0,1]$ is continuous and $(f \circ P)(x)=0$ and $(f \circ P)(C)=1$. Hence (X, T) is comletely regular.

THEOREM 2.4. The following are equivalent: (a) (X, T) is normal R_{0}, (b) $\left(X_{0}, S_{0}\right)$ is normal R_{0}, and (c) $\left(X_{0}, S_{0}\right)$ is T_{4}.

PROOF. (a) implies (b): By Theorem 2.1, $\left(X_{0}, S_{0}\right)$ is an R_{0} upper semi-continuous decomposition of X into compact sets and since (X, T) is normal, then (X_{0}, S_{0}) is normal.
(b) implies (c): Since (X_{0}, S_{0}) is nomal, R_{0}, and T_{0}, then (X_{0}, S_{0}) is T_{4}.
(c) implies (a): By Theorem 2.1, (X,T) is $R_{0}, X_{0}=\{\overline{\{x\}}[x \in X\}$, and P is closed. Let C_{1} and C_{2} be disjoint closed sets in X. Then $P\left(C_{1}\right)$ and $P\left(C_{2}\right)$ are disjoint closed sets in X_{0} and there exist disjoint open sets \mathscr{U} and \mathscr{V} such that
$P\left(C_{1}\right) \subset \mathscr{U}$ and $P\left(C_{2}\right) \subset \mathscr{Y}$. Then $C_{1} \subset P^{-1}(\mathscr{C}) \in T$, and $C_{2} \subset P^{-1}(\mathscr{Y}) \in T$, and P^{-1} $(\mathscr{C}) \cap P^{-1}(\mathscr{V})=\phi$. Hence, (X, T) is normal.

THEOREM 2.5. A space (X, T) is pseudometrizable if and only if $\left(X_{0}, S_{0}\right)$ is metrizable.

Proof. Suppose (X, T) is pseudometrizable. Let d be a pseudometric on X compatible with T. Since (X, T) is pseudometizable, then (X, T) is R_{0} and X_{0} $=\{\overline{\{x\}} \mid x \in X\}$. Let d_{0} be the metric on X_{0} defined by $d_{0}(\overline{x\}}, \overline{\{y\}})=d(x, y)$. Since P is continuous, open, and onto, then d_{0} is compatible with S_{0}, which implies ($X_{0}, \mathrm{~S}_{0}$) is metrizable.

Conversely, suppose ($\mathrm{X}_{0}, \mathrm{~S}_{0}$) is metrizable. Then (X_{0}, S_{0}) is T_{1}, which implies (X, T) is R_{0} and $X_{0}=\left\{\overline{\{x\}}[x \in X\}\right.$. Let P_{0} be a metric on X_{0} compatible with S_{0} and let P be the pseudometric on X defined by $P(x, y)=P_{0}(\overline{\{x\}},\{\overline{y\}})$. Since P is continuous, open, and $P^{-1}(P(0))=0$ for all $0 \in T$, then P is compatible with T, which implies (X, T) is pseudometrizable.

THEOREM 2.6. Let (X, T) be an R_{0} space. Then (a) (X, T) is separable if and only if $\left(X_{0}, S_{0}\right)$ is separable, and (b) (X, T) is second countable if and only if (X_{0}, S_{0}) is second countable.

Proof. By Theorem 2.1, $\left(X_{0}, S_{0}\right)$ is $T_{1}, X_{0}=\{\overline{\{x\}} \mid x \in X\}, P$ is closed open, and $P^{-1}(P(0))=0$ for all $0 \in T$.
(a) Suppose (X, T) is separable. Thus (X, T) has a countable dense subset $\left\{x_{i}\right\}_{i=1}^{\infty}$. Then $\left\{\overline{\left.x_{i}\right\}}\right\}_{i=1}^{\infty}$ is a countable dense subset of (X_{0}, S_{0}), which implies (X_{0}, S_{0}) is separable.

Conversely, suppose (X_{0}, S_{0}) is separable. Thus (X_{0}, S_{0}) has a countable dense subset $\left\{\overline{\left\{x_{i}\right\}}\right\}_{i=1}^{\infty}$. Then $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a countable dense subset of X, which implies (X, T) is separable.
(b) Suppose (X, T) is second countable. Then (X_{0}, S_{0}) is an upper semicontinuous decomposition of (X, T) into compact sets and (X, T) is second countable, which implies (X_{0}, S_{0}) is second countable [2].

Conversely, suppose (X_{0}, S_{0}) is second countable. Then (X_{0}, S_{0}) has a countable base $\left\{\mathcal{O}_{i}\right\}_{i=1}^{\infty}$. For each $i \in N$, let $\mathrm{O}_{i}=P^{-1}\left(\mathcal{O}_{i}\right)$. Then $\left\{\mathrm{O}_{i}\right\}_{i=1}^{\infty}$ is a countable base for (X, T), which implies (X, T) is second countable.

The next corollary can be obtained by using Theorem 2.5, Theorem 2.2, Theorem 2.6, and Urysohn's Metrization Theorem.

COROLLARY 2.2. The following are equivalent: (a) (X, T) is regular second countable, (b) (X_{0}, S_{0}) is a separable metric space, and (c) (X, T) is a separable. pseudometric space.

North Texas State University
Denton, Texas 76203

REFERENCES

[1] A. D. Davis, "Indexed Systems of Neighborhoods for General Topological Spaces," The American Mathematical Monthly, 68(1961), 886-893.
[2] J. Kelley, General Topology, Van Nostrand, 1955.
[3] S. Willard, General Topology, Addison-Wesley Publishing Company, 1970.
[4] W. Dunham, "Weakly Hausdorff Spaces," Kyungpook Mathematical Journal, 15: (1975), 41-50.

