By Charles Dorsett

CHARACTERIZATIONS OF SPACES USING T_0 -IDENTIFICATION SPACES

Kyungpook Math. J. Volume 17, Number 2 December, 1977

1. Introduction

In this paper T_0 -identification spaces are used to characterize spaces which are R_0 , R_1 , regular, completely regular, normal R_0 , or pseudometrizable, where the T_1 axiom is not included in the definitions of regular, completely regular, and normal. Regular T_1 , completely regular T_1 , and normal T_1 will be denoted by T_3 , $T_{3\frac{1}{2}}$, and T_4 , respectively. Listed below are definitions and theorems that will be utilized in this paper.

DEFINITION 1.1. A topological space (X,T) is R_0 if and only if for each closed set C and for each $x \notin C$, $C \cap \overline{\{x\}} = \phi$ [1].

THEOREM 1.1. The following are equivalent: (a) (X,T) is R_0 , (b) if $0 \in T^{\sim}$ and $x \in O$, then $\overline{\{x\}} \subset O$, and (c) for $x, y \in X$, either $\overline{\{x\}} = \overline{\{y\}}$ or $\overline{\{x\}} \cap \overline{\{y\}} = \phi$ [1].

DEFINITION 1.2. If \sim is an equivalence relation on (X, T), then the \sim identification space of (X, T) is $(\mathcal{D} \sim, \mathcal{Q} \sim)$, where $\mathcal{D} \sim$ is the set of equivalence classes of \sim and $\mathcal{Q} \sim$ is the decomposition topology on $\mathcal{D} \sim [3]$.

DEFINITION 1.3. Let \sim° be the equivalence relation on (X, T) defined by $x \sim^{\circ}$ y if and only if $\overline{\{x\}} = \overline{\{y\}}$. The T_0 -identification space of (X, T) is the \sim° identification of (X, T), which is T_0 . Let $X_0 = \mathscr{D} \sim^{\circ}$, let $S_0 = \mathscr{O} \sim^{\circ}$, and let $P: (X, T) \to (X_0, S_0)$ be the natural map [3].

DEFINITION 1.4. For a space (X, T) let \sim' be the relation in $X \times X$ defined by $x \sim 'y$ if and only if $x \in \overline{\{y\}}$. Then \sim' is not always an equivalence relation on X' and $\sim^{\circ} \subset \sim'$.

DEFINITION 1.5. A space (X, T) is R_1 if and only if for $x, y \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$ there exist disjoint open sets U and V such that $\overline{\{x\}} \subset U$ and $\overline{\{y\}} \subset V$ [1]. THEOREM 1.2. A space is T_1 if and only if it is R_0 and T_0 and a space is T_2 .

ν

176 Charles Dorsett

if and only if it is R_1 and T_0 [1].

THEOREM 1.3. A space (X, T) is R_1 if and only if (X_0, S_0) is T_2 [4].

2. Characterizations

THEOREM 2.1. The following are equivalent: (a) (X, T) is R_0 , (b) \sim' is an

equivalence relation on X, (c) $(\mathscr{D} \sim', \mathscr{Q} \sim') = (X_0, S_0), X_0 = \{\overline{\{x\}} | x \in X\}, (X_0, S_0)$ is T_1 , P is closed open, and $P^{-1}(P(0)) = 0$ for all $0 \in T$, (d) (X_0, S_0) is R_0 , and (e) (X_0, S_0) is T_1 .

PROOF. (a) implies (b): If $(x, y) \in \sim'$, then $x \in \overline{\{y\}}$ and $\overline{\{x\}} \cap \overline{\{y\}} \neq \phi$, which implies $\overline{\{x\}} = \overline{\{y\}}$ and $(x, y) \in \sim^{\circ}$. Hence $\sim' = \sim^{\circ}$, which is an equivalence relation. (b) implies (c): If $x \in X$ and C_x is the equivalence class of \sim' containing x, then $C_x = \overline{\{x\}}$. Thus $\overline{\{x\}} \mid x \in X$ } is a decomposition of X, which implies (X, T) is R_0 . By the argument above $\sim' = \sim^{\circ}$, and thus $(\mathcal{D} \sim', \mathcal{C} \sim') = (X_0, S_0)$ and $X_0 = \overline{\{x\}} \mid x \in X$. If $0 \in T$, then $P^{-1}(P(0)) = \bigcup_{x \in O} \overline{\{x\}} = 0$, which implies $P(0) \in S_0$, and thus P is open. For C closed in X, $P(C) = X_0 \setminus P(X \setminus C)$, which is closed, and thus P is closed. If $\overline{\{x\}} \in X_0$, then $\overline{\{x\}} = P(\overline{\{x\}}) = P(\overline{\{x\}}) = \overline{\{x\}}$, which implies (X_0, S_0) is T_1 .

(c) implies (d): Since every T_1 space is R_0 , then (X_0, S_0) is R_0 .

(d) implies (e): Since (X_0, S_0) is R_0 and T_0 , then (X_0, S_0) is T_1 . (e) implies (a): Let $x \in X$ and let C_x be the equivalence class of \sim° containing

x. Then $C_x \subset \overline{\{x\}}$. Since $\{C_x\}$ is closed in X_0 , then $x \in C_x = P^{-1}(\{C_x\})$, which is closed, and thus $\overline{\{x\}} \subset C_x$ and $C_x = \overline{\{x\}}$. Hence $X_0 = \{\overline{\{x\}} \mid x \in X\}$, which implies (X, T) is R_0 .

The following corollary can be obtained by using Theorem 1.3 and Theorem 1.2.

COROLLARY 2.1. A space (X,T) is R_1 if and only if (X_0, S_0) is R_1 . Note that if (X, T) is R_0 , then $\overline{\{x\}}$ compact for all $x \in X$.

THEOREM 2.2. The following are equivalent: (a) (X, T) is regular, (b) (X_0, S_0) is regular, and (c) (X_0, S_0) is T_3 .

PROOF. (a) implies (b): Since (X, T) is regular, then (X, T) is R_0 . By Theorem 2.1, (X_0, S_0) is an upper semi-continuous decomposition of X into

Characterizations of Spaces Using T_0 -Identification Spaces 177

compact sets and since (X, T) is regular, then (X_0, S_0) is regular [2]. (b) implies (c): Since (X_0, S_0) is regular T_0 , then (X_0, S_0) is T_3 . (c) implies (a): By Theorem 2.1, $X_0 = \{\overline{\{x\}} \mid x \in X\}$, P is open, and $P^{-1}(P(0))$ =0 for all $0 \in T$. Let $0 \in T$ and let $x \in 0$. Then $\overline{\{x\}} \in P(0)$, which is open in X_0 . Thus there exists an open set \mathscr{V} such that $\overline{\{x\}} \in \mathscr{V} \subset \overline{\mathscr{V}} \subset P(0)$, which implies

 $x \in P^{-1}(\mathscr{V}) \subset P^{-1}(\overline{\mathscr{V}}) \subset 0$. Hence (X, T) is regular.

THEOREM 2.3. The following are equivalent: (a) (X, T) is completely regular, (b) (X_0, S_0) is completely regular, and (c) (X_0, S_0) is $T_{3\frac{1}{2}}$.

PROOF (a) implies (b): Since (X, T) is completely regular, then (X, T) is R_0 . By Theorem 2.1, $X_0 = \{\overline{\{x\}} \mid x \in X\}$ and P is open. Let \mathscr{C} be closed in X_0 and let $\overline{\{x\}} \notin \mathscr{C}$. Then $P^{-1}(\mathscr{C})$ is closed in X and $x \notin P^{-1}(\mathscr{C})$ and there exists a continuous function $f: (X, T) \to [0, 1]$ such that f(x) = 0 and $f(P^{-1}(\mathscr{C})) = 1$. Let $g: (X_0, S_0) \to [0, 1]$ defined by $g(\overline{\{y\}}) = f(y)$. Then $g(\overline{\{x\}}) = 0$ and $g(\mathscr{C}) = 1$. If 0 is open in [0, 1], then $f^{-1}(0)$ is open in X and $g^{-1}(0) = P(f^{-1}(0))$ is open in X_0 , which implies g is continuous. Hence, (X_0, S_0) is completely regular. (b) implies (c): Since (X_0, S_0) is completely regular T_0 , then (X_0, S_0) is $T_{3\frac{1}{2}}$.

(c) implies (a): By Theorem 2.1, $X_0 = \{\overline{\{x\}} | x \in X\}$ and P is closed. Let C be

closed in X and let $x \notin C$. Then P(C) is closed in X_0 and $P(x) \notin P(C)$ and there exists a continuous function $f: (X_0, S_0) \rightarrow [0, 1]$ such that $f(P(x)) \neq 0$ and f(P(C))=1. Then $f \circ P: (X, T) \rightarrow [0, 1]$ is continuous and $(f \circ P)(x) = 0$ and $(f \circ P)(C) = 1$. Hence (X, T) is comletely regular.

THEOREM 2.4. The following are equivalent: (a) (X, T) is normal R_0 , (b) (X_0, S_0) is normal R_0 , and (c) (X_0, S_0) is T_4 .

PROOF. (a) implies (b): By Theorem 2.1, (X_0, S_0) is an R_0 upper semi-continuous decomposition of X into compact sets and since (X, T) is normal, then (X_0, S_0) is normal.

(b) implies (c): Since (X_0, S_0) is nomal, R_0 , and T_0 , then (X_0, S_0) is T_4 . (c) implies (a): By Theorem 2.1, (X, T) is $R_0, X_0 = \{\overline{\{x\}} \mid x \in X\}$, and P is closed. Let C_1 and C_2 be disjoint closed sets in X. Then $P(C_1)$ and $P(C_2)$ are disjoint closed sets in X_0 and there exist disjoint open sets \mathcal{U} and \mathcal{V} such that

178 Charles Dorsett

 $P(C_1) \subset \mathscr{U} \text{ and } P(C_2) \subset \mathscr{V}.$ Then $C_1 \subset P^{-1}(\mathscr{U}) \in T$, and $C_2 \subset P^{-1}(\mathscr{V}) \in T$, and P^{-1} . $(\mathscr{U}) \cap P^{-1}(\mathscr{V}) = \phi$. Hence, (X, T) is normal.

THEOREM 2.5. A space (X, T) is pseudometrizable if and only if (X_0, S_0) is metrizable.

PROOF. Suppose (X,T) is pseudometrizable. Let d be a pseudometric on X compatible with T. Since (X,T) is pseudometizable, then (X,T) is R_0 and $X_0 = \{\overline{\{x\}} \mid x \in X\}$. Let d_0 be the metric on X_0 defined by $d_0(\overline{\{x\}}, \overline{\{y\}}) = d(x, y)$. Since P is continuous, open, and onto, then d_0 is compatible with S_0 , which implies (X_0, S_0) is metrizable.

Conversely, suppose (X_0, S_0) is metrizable. Then (X_0, S_0) is T_1 , which implies (X, T) is R_0 and $X_0 = \{\overline{\{x\}} \mid x \in X\}$. Let P_0 be a metric on X_0 compatible with S_0 and let P be the pseudometric on X defined by $P(x, y) = P_0(\overline{\{x\}}, \overline{\{y\}})$. Since P is continuous, open, and $P^{-1}(P(0)) = 0$ for all $0 \in T$, then P is compatible with T, which implies (X, T) is pseudometrizable.

THEOREM 2.6. Let (X,T) be an R_0 space. Then (a) (X,T) is separable if and only if (X_0, S_0) is separable, and (b) (X,T) is second countable if and only if (X_0, S_0) is second countable.

PROOF. By Theorem 2.1, (X_0, S_0) is $T_1, X_0 = \{\overline{\{x\}} | x \in X\}$, P is closed open, and $P^{-1}(P(0)) = 0$ for all $0 \in T$.

(a) Suppose (X, T) is separable. Thus (X, T) has a countable dense subset $\{x_i\}_{i=1}^{\infty}$. Then $\{\overline{\{x_i\}}\}_{i=1}^{\infty}$ is a countable dense subset of (X_0, S_0) , which implies (X_0, S_0) is separable.

Conversely, suppose (X_0, S_0) is separable. Thus (X_0, S_0) has a countable dense subset $\{\overline{\{x_i\}}\}_{i=1}^{\infty}$. Then $\{x_i\}_{i=1}^{\infty}$ is a countable dense subset of X, which implies (X, T) is separable.

(b) Suppose (X, T) is second countable. Then (X_0, S_0) is an upper semicontinuous decomposition of (X, T) into compact sets and (X, T) is second countable, which implies (X_0, S_0) is second countable [2].

Conversely, suppose (X_0, S_0) is second countable. Then (X_0, S_0) has a countable base $\{\mathscr{O}_i\}_{i=1}^{\infty}$. For each $i \in N$, let $O_i = P^{-1}(\mathscr{O}_i)$. Then $\{O_i\}_{i=1}^{\infty}$ is a countable base for (X, T), which implies (X, T) is second countable.

Characterizations of Spaces Using T_0 -Identification Spaces 179•

The next corollary can be obtained by using Theorem 2.5, Theorem 2.2, Theorem 2.6, and Urysohn's Metrization Theorem.

COROLLARY 2.2. The following are equivalent: (a) (X,T) is regular second countable, (b) (X_0, S_0) is a separable metric space, and (c) (X,T) is a separable pseudometric space.

North Texas State University Denton, Texas 76203 .

REFERENCES

[1] A. D. Davis, "Indexed Systems of Neighborhoods for General Topological Spaces," The American Mathematical Monthly, 68(1961), 886-893.

[2] J. Kelley, General Topology, Van Nostrand, 1955.

[3] S. Willard, General Topology, Addison-Wesley Publishing Company, 1970.
[4] W. Dunham, "Weakly Hausdorff Spaces," Kyungpook Mathematical Journal, 15: (1975), 41-50.