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Analysis of A Straight Fin with

Temperature-Dependent Thermal Conductivity
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1. Introduction

Fins are widely used on heat exchangers to in-
crease of heat transfer. Analysis of fins usually
assumes one-dimensional steady-state heat conduc—
tion with constant thermal conductivity and heat
transfer coefficient[]].

In this paper one-dimensional steady-state ana-
lysis is given for a straight fin with constant
cross-sectional area and temperature dependent
thermal conductivity. The thermal conductivity of
the fin material is assumed to very linearly with
temperature. An analytical solution is given in
terms of elliptic integrals. Aziz and Enamul Hug
[4] obtained a first order perturbation solution for
the same problem. A second order perturbation

solution is given for easy numerical computation.

2. Analysis

Temperature distribution in a straight fin satis-
fies following differential equation:

d aT —
ﬁ<kA—d;X: —kP{T—T.) =0 63
YFER, BMNTAAS
19774 68

tEi-e golstA]l strl $18te] perturbation fEx

One-demensional steady-state is assumed. If the
cross-sectional area of the fin A is constant, and
the thermal conductivity of the fin material &
varies linearly with temperature 7, it can be ex-
pressed as

b=k 1+ 5. I=T-

Ty— :r;>
Wherellea_ is thermal conductivity at surrounding

2

temperature, 7, and is a dimensionless constant.

If we define

_T-T.

x=X/L (4)

m=LvV' kP/k.4 {5y
the equation (1) can be made dimensionless

L a+6990)—ms=0 6
Boundary conditions are

6=1 at x=] ¥p)

ae _ . . _

Epuation (7) assumes that the fin base tempera~
ture, T, is known, and equation (8) assumes that

the fin tip is thermally insulated.
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Symbols are given in Nomenclature where
2.1 Exact Solution a1—4—ﬁ(1+2/90r)“ /(1+%ﬂ0¢>(1—2ﬁ0:) (18)
Equation (6) is a second order nonlinear differ- ) —
. : o as=—Jo (142800 +/ (142 41, (12600 (19
ential equation, and exact solution is not yet
given. a=arc sin\/ 06 (20)
dﬁ 0“‘0:—*—6{1
Let u==-— 9) T—¢
dx ap=arc sin\/ 2 ! (21)
then equation (6) is transformed to a first order _ 1=bita
differential equation: bz\/ﬂ—_a_l_ (22)
a “
(1+ﬂ0) u u'+ﬁuz_m2020 (10) sing dt
d0 F(a, b): 50 —(-]:2)*(1:~bz’tz)‘ (23)
. . dt
Boundary condition (8) is changed to is elliptic integral of the first kind, and
u=0 at x:O (11) sing dt
However, since x is missing in equation (10), bo- n(n; a,b)= So (1—nt5) v (1—19) (1 b4 24
undary condition (11) is not useful, therefore, let g elliptic integral of the third kind, which are
u==(0 at 6=0, 12) tabulated in mathematical tables, e.g., in Refe-
where 6, is the value of # at x=0, which is not rence 2. Equations (16) and (17) are valid when
known a priori. both «; and «a; are positive, i.e., —é—fﬁ&,f%,
Solution of equation (10). which satisfies the bo- Efficiency of a fin is usually defined as [Ref. 3]
undary condition (12) is easily obtained. actual heat transferred
n=
2 heat which would be transferred if
wre mszz 0+ ﬁ(m:éi)r} entire fin area were at base temperature
g In dimensionless variables defined in this paper,
dx 1+ﬂ0 \/02 0,"-—]— (6’3 83) (13) this becomes
Integrating equation (13), one obtains p= (1+8) d&‘ (25)
) (l—l—ﬂf?) deg _ mt
mx= 5 \/ P00+ 2 o) (14) cr,
Applying boundary condltlon (M, 0, is obtained \/1—0‘2—%%5(1——0,3) (26)
from = m
1 (+p6)do 2.2. Perturbation Solution
m= S Jo—a: +%,9 8 (15)
ot o Equation (16) with equation (17) is mathemati-
when f=0, equation (14) and (15) are easily inte- cally exact; however, since the temperature distri-
grated to give widely kno.wn solutlon.. bution is given in an implicit function of élliptic
If p#0, the right-hand sides of equation (14) and integrals, it is not useful for numerical ccmputa.
(15) are integrated to give(2]. tion. Therefore, an approximate solution by pertur-
mx= \/—ﬁ?{— (14-B6,—Ba;) F(a, b) bation method is now to be obtained.
_2_ When |8|<1, 6 can be approximated by
6 .
/B <5, ) (16) 660+ 501+ F0snt (27)
m-\/—6—(14—,80 ey Flay, b Then substituting equation (27) into (6}, and
- i 1 t 1 by - . .
Ba: collecting terms with same power of 3, one obzains
—ar/ EE (1 b an %ﬁ"’-—mzeo:o (28)
az
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d26, o A%, _ [ df, N\
dx? % dx? dx ) 29)
a0y, ., __, d*6 _, db,
de =0
dé, dazg,
dx g (30)
Boundary conditions are
f,=1 at x=}, and 46, =0 at x=0 (313
dx
6:=0 at x=], and im—‘:O at x=0 (32)
dx
6,2=0 at x=], and dﬁz ~.=0 at x=0 (33)
Solution of equations (28)—(33) are
__Cosh mx
~ cosh m 34)
6= Cosh 2m cosh mx—coskm cosh 2mx (35)
3coshim
6, _( 2co8h2m __ m sinkm _3cosh3m
9coshm 12coshim  16coshim /
h mx sinkmx _ gcosh2m-coshamz_
coshmE+ = 12cosk’m 9coshim
3 cosh3mx
+ 16coskhm (36)

Efficiency of fin defined in ejuation (25) becomes
_a+psr d9o

which

is kncwn.

only heat transfer from a fin is impcriant,
can be computed if fin efficiency So-
metimes temperature at the fin tip is a measure cf
the fin efficiency.

For a given value of 3, relaticnship between 8,

and m can be computed from equa*icn (i7), and
then efficiency as a function of 6, is cbtzined from
equation (26).

Table 1 shows values of perturbz:icn functicns,
B, B;, and #.;, for m=0.2, 1.0, and 1.5.
that values of the first and the seccnd perturbation
that 3he

approximate solution by the perturbation method

It is seen

functions are very small, which indicae
gives accurate results.

Fig. 1 shows fin efficiency, 5 2s a function of
dimensionless parameter m. For 830, fin efficiency
wculd be underestimated and for §0.7 wculd be
overestimated if thermal conductivity is assumed

constant.

Table 1.

Perturbation Functions for m=0. 2

x|

dﬁ; df, (37) 8 8 0
m: L dx +ﬁ2 + ]r 1 ——— ’ ! .
. 0.0 0. 98033 0. 00434 ~0.0
3. Discussion and Conclusion - 1o
0.1 0. 98052 0.00430 —0.01829
Exact solution (eq. 16) is not practical to calculate 0.2 0.98111 0.00418 —0.01776
temperature distribution, However. complete tem- 0.3 0. 98209 0. 00397 —0.01687
perature distribution in a fin is not important, and 0.4 0. 98347 Q. 00367 —0- 01562
%,n
1.0
0.8
0.8
Q.7
0.6
. 0.5
i Fin with
0.4 Termmperature — Bependent
Thermal Conductivity i
0.3 l
o.2r "
0. |
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Fig. 1. Fin efficiency VS. dimensionless parameter m.
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0.5  0.98523 0.00329 —0.01400
0.6 0.98739 0.00282 —0.01200
0.7 0.98995 0.00226 —0.00961
0.8 0.99290 0. 00160 —0.00682
0.9  0.99625 0.00085 —0.00363
1.0 1.00000 0. 00000 0.00000
AL, 0-0348  —0.038% +0. 02627
Perturbation Functions for m=1.0
X E 60 01 62
0.0 0.64805 0.00867 —0.08713
0.1  0.65130 0. 00867 —0.08750
0.2 0.66106 0.00865 —0. 08852
0.3 0.67744 0. 00859 —0.08988
0.4 0.70059 0.00846 —0.09103
0.5  0.73076 0.00820 ~0.09110
0.6 0.76825 0.00772 —0.08873
0.7  0.81342 0.00688 —0.08196
0.8 0.86673 0. 00551 —0.06794
0.9 0.92872 000334 —0. 04256
1.0 1.00000 0.00000 0.00000
KA 0.76159  —0.61435 +0.71188
x 'x=]

Perturbation Functions for m=1.5

x| 8 3 6,

:
0.0 0.42510 0. 19756 —0.02695
0.1  0.42989 0.19773 —0.03159
0.2 0.44437 0. 19807 —0.03566
0.3 0.46887 0.19801 —0. 04235
0.4  0.50394 0. 19654 ~0.05138
0.5  0.55036 0.19206 —0.06202
0.6 0.60920 - 0.18226 —0.07272
0.7 0.68177 0.16381 —0.08038
0.8 0.76970 0.13205 ~0.07914
0.9 0.87500 0. 08405 —0.05844
1.0 1.00000 0. 00000 0. 00000

{ﬁiixz:l 135772 —0.98693 +0. 86614

NOMENCLATURE

A: cross sectional area(m?)

a: constant defined by eq. (20) (dimensionless)
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b: constant defined by eq. (22) (dimensionless)
F(a,b): elliptic integral of the first kind (dimen-
sionless)

: surface heat transfer coefficient (W/m? K)
thermal conductivity of fin material (W/m-K)
: length of fin (m)

: parameter defined by eq. (5) (dimensionless)
Perimeter of fin (m)

: temperature (K)

oy ¥ oo

: nondimensionalized temperature gradient (dim-
ensionless)

X: distance measured from fin tip (m)

x: nondimensionalized space coordinate (dimensio-

nless)

Greek letters

dy, @zt constants defined by eq. (18) and (19) (di-
mensionless)

B: constant defined by eq. (2) (dimensionless)

7n: efficiency of fin (dimensionless)

6: nondimensionalized temperature (dimensionless)

v, 61, 6 perturbation functions defined by eq. (27)
(dimensionless)

(n;a, &) elliptic integral of the third kind (dime-
nsionless)

Subscript

b: fin base condition
t: fin tip condition

co: surrounding condition
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