On Estimating the Variance of a Normal Distribution with Known Coefficient of Variation

S. K. Ray and A. Sahai*

ABSTRACT

This note deals with the estimation of the variance of a normal distribution $N(\theta, c\theta^2)$ where c, the square of coefficient of variation is assumed to be known. This amounts to the estimation of θ^2 . The minimum variance estimator among all unbiased estimators linear in \bar{x}^2 and s^2 where \bar{x} and s^2 are the sample mean and variance, respectively, and the minimum risk estimator in the class of all estimators linear in \bar{x}^2 and s^2 are obtained. It is shown that the suggested estimators are BAN.

1. INTRODUCTION

Consider a normal distribution $N(\theta, c\theta^2)$ with mean θ and variance $c\theta^2$ where c, the square of the coefficient of variation, is assumed to be known. The problem is to estimate the varince or, more specifically, θ^2 on the basis of a fixed sample of size n. In this case Searles (1964), Khan (1968), and Glesser and Healey (1976) gave estimators of the mean θ indicating practical situations wherein the coefficient of variation may be known. Das (1975) considered the estimation of θ^2 and suggested;

$$T_u = \overline{x}^2/(1+c/n)$$

as the unbiased estimator of θ^2 .

In the present paper, we treat the problem of estimating θ^2 as a decision

^{*} Department of Statistics, Lucknow University, Lucknow, India. 226007.

problem using the squared-error loss function

$$L(\theta^2, T) = (T - \theta)^2$$

where T is an estimator of θ^2 .

We assume that a random sample x_1, x_2, \ldots, x_n of fixed size $(n \ge 2)$ is taken from the normal distribution $N(\theta, c\theta^2)$ where $\theta > 0$ is unknown and c > 0 is known.

Let

$$\overline{x} = n^{-1} \sum_{i=1}^{n} x_i, \quad s^2 = (n-1)^{-1} \sum_{i=1}^{n} (x_i - \overline{x})^2.$$

In section 2 we consider the class of unbiased estimators linear in \bar{x}^2 and s^2 and obtain the minimum risk (or variance) estimator of θ^2 in this class and show that it is BAN (best asymptotically normal). In section 3 we consider the case of all estimators linear in \bar{x}^2 and s^2 and obtain the minimum risk estimator of θ^2 in this class and show that it is also BAN.

2. LINEAR MINIMUM VARIANCE ESTIMATOR

It is easy to check that

$$T_1 = s^2/c$$

and

$$T_2 = \overline{\chi}^2/b$$

where b = (1 + c/n), are unbiased estimators of θ^2 . Also

$$Var(T_1) = 2\theta^4/(n-1)$$

$$Var(T_2) = 2\theta^4(b^2-1)/b^2$$

and

$$Covar(T_1, T_2) = 0$$

Now we consider the class of unbiased estimators of θ^2 as

$$T = kT_1 + (1-k)T_2, \quad 0 \le k \le 1$$
 (2.1)

for which the risk under the squared error loss function is given by

$$R(T,\theta^2) = E(T-\theta^2)^2$$

$$=$$
Var (T)

$$=k^2 \text{Var}(T_1) + (1-k)^2 \text{Var}(T_2)$$

The best value of k which minimises $R(T, \theta^2)$ is

$$k^* = \operatorname{Var}(T_2) / \left[\operatorname{Var}(T_1) + \operatorname{Var}(T_2) \right]$$

= $(n-1) (b^2 - 1) / \left[nb^2 - (n-1) \right]$ (2.2)

Therefore,

$$T_{LU} = k^* T_1 + (1 - k^*) T_2$$

= $k^* s^2 / a + (1 - k^*) \overline{x}^2 / b$

where k^* is given by (2.2), is the minimum variance estimator among all unbiased estimators of the type given by (2.1). Hence T_{LU} is uniformly better than T_1 and T_2 alone, so that, T_n of Das (1975) is inadmissible.

It is easy to check that as $n\to\infty$, $k^*\to 2c/(1+2c)$, $Var(T_1)\to 2\theta^4/n$ and $Var(T_2)\to 4c\theta^4/n$. Therefore the asymptotic variance of T_{LU} is $4c\theta^4/n(1+2c)$ which happens to be the Cramer-Rao lower bound for the variance of an unbiased estimator of θ^2 . This leads us to the assertion that T_{LU} is a BAN estimator of θ^2 .

3. LINEAR MINIMUM RISK ESTIMATOR

Now we consider the class of all estimators of θ^2 which are linear in \bar{x}^2 and s^2 , but not necessarily unbiased *i.e.* of the type given by

$$T' = k_1 \bar{x}^2 + k_2 s^2 \tag{3.1}$$

for which the risk under the squared-error loss function is

$$\begin{split} R(T',\theta^2) &= E(T'-\theta^2)^2 \\ &= E(T')^2 - 2\theta^2 E(T') + \theta^4 \\ &= k_1^2 E(\overline{x}^4) + k_2^2 E(s^4) + 2k_1 k_2 E(\overline{x}^2) E(s^2) - 2\theta^4 (k_1 b + k_2 c) + \theta^4 \end{split}$$

The best values of k_1, k_2 which minimise $R(T', \theta^2)$ are

$$k_1^* = b/[(2n+1)b^2 - 2n]$$
 and (3.2)

$$k_2^* = (2/n)(n-1)(b+1)/[(2n+1)b^2-2n]$$

Therefore,

$$T_{LM} = k_1 * \overline{x}^2 + k_2 * s^2$$

where k_1^* and k_2^* are given by (3.2) is the minimum risk estimator among all estimators of type given by (3.1). Also

$$R(T_{LM}, \theta^2) = 2\theta^4(b^2-1)/[(2n+1)b^2-2n]$$

It may further be checked that as $n\to\infty$, $R(T_{LM},\theta^2)=4c\theta^4/n(1+2c)+0(1/n^2)$ so that the asymptotic variance of T_{LM} is $4c\theta^4/n(1+2c)$ which is the Cramer-Rao lower bound. This leads us to the assertion that T_{LM} is also BAN estimator of θ^2 .

REFERENCES

- [1] Das, B.P., "Estimators of μ^2 in Normal Population," Calcutta Statistical Association Bulletin 24 (1976) 135-139.
- [2] Glesser, L. J. and Healey, J.D., "Estimating the Mean of a Normal Distribution with Known coefficient of Variation," *Journal of American Statistical Association* 71 (1976), 977-981.
- [3] Khan, R,A., "A Note on Estimating the Mean of a Normal Distribuion with Known Coefficient of Variation," Journal of American Statistical Association 63 (1968), 1039-41.
- [4] Searles, D.T., "The Utilization of a Known Coefficient of Variation in Estimating Procedures," Journal of American Statistical Association 59 (1946), 1225-1226.