Stochastic Duels with Random Detection
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ABSTRACT

This paper presents a method of incorporating detection capability of weapon systems
into the “fundamental” stochastic duels of Williams and Ancker when both detection
and interfiring times are continuous random variables. An example with negative
exponential detection and firing times is also given.

1, INTRODUCTION

A kill is obtained by firings that can be activated only after the target is
completely acquired. Generally for a weapon system to be effective, it must be
equipped with efficient detection devices (radar, sonar, etc.) as well as powerful
firing systems. Thus, a combat model that includes a process of detection-
destruction may be more effective than the one that considers only destruction.

Dubins and Morgenthaler 4] included detection in survival models for vehicle-
to-vehicle space combat and Barfoot [2] incorporated random initial surprise
into Markov duels. Williams and Ancker [8] extended their fundamental duel to
the case of random initial surprise. However initial detection capability is not
considered.

As an extension of Williams and Ancker [8], we incorporate random initial
detection as well as surprise into stochastic duels. An example with negatilve

exponential detection and firing times is also given.

2, THE PROBLEM AND ASSUMPTIONS

Duelist A has two patterns of flow in detection-destruction: One is case I (see
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Fig. 1) where A detects B before he is detected and therefore he has more time
for firing than B, and the other is case II where A has less time for firing than
B since he is detected before he detects B.

It is assumed that both duelists are in an arena at time zero with unloaded
weapons, unlimited ammunition supply and unlimited search efforts, and operate
their detection devices simultaneously.

If A detects B first (Case I) during time interval [, x+dx], where x is called
the “initial detection time” for 4, he start to load his first round. However,
B can load his first round cnly after he spent time y to detect A’s firing position.
» will be called “reactive detection time” for B or “firing time with impunity”
for A. Then this duel, immediately after A’s initial detection during time
interval (x, x-+dx], becomes the duel with random initial surprise studied by
Williams and ancker [8]. Case II can be handled similarly.

In both cases the criterion of A’s winning is that he kills B before B gets
him. Therefore, when the duel time is limited by 7T, the probability P,(T)
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Fig. 1 The flow of detection-destruction for case I

that A will win is the sum of two winning probabilities P,.(T) of case I and
Pyu(T) of case II, that is,

(1) Pa(T)=Pse(T) +Pa(T)-

Then, A’s winning probability P(4) with unlimited duel time can be defined as

2) P(4)= TP, (T) =Pe(4) +Pi(4)

where P.(4) and P;(4) are the winning probabilities for the two cases with
unlimited duel time.

In this paper, general expressions for P,(T) and P(A4) with random detection

and interfiring times are derived. In particular, two detection functions are
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considered as follows: One is the case of continuous detection time of Koopman

[6] in which A's probability density function (pdf) of random detection time

is expressed as
—dAt
(3) dAl(t):dA 4

where d, is A's average rate of detection. Then, the Laplace transform d,*(s)

of d4 (¢) becomes

x(y—_ da
(4) dA; (S)—?d,;_

(Henceforth the Laplace transform of function a(¢) will be denoted by a*
(s).) The other is the case where time between detection actions such as glimpses,
sweeps or pluses is a continuous random variable. Dzfining d,,(¢)d¢ as'the pro-
bability that A detects B in (¢, ¥+4d¢] and following arguments similar to

Williams and Ancker [87], we obtain
() dnOdi=5% asl-a)" B, (e

where «, is the probability that 4 detects B with a detection action, B,(¢) is

A’s pdf of inter-glimpse time and S, (¢) is the n-fold convolution of B,(?).

Then, we have

« . aBa* (5)
(6) do*(s)= 1_(61(—5(,!,;)!3/4*(5)

3. THE MODEL

Some notations for duelist 4 are defined as follows;

d4(x)dx: the probability of A’s initial detection in (x, x4dx)

g4(»)dy: the probability of A’s reactive destection in (y, y+dy]

ka(t)dt: the probability that A kills passive target B in (¢, ¢+d¢].

k' (¢): the convolution of g4(¢) and k,(¢).

kac(1)dt: the probability that A wins during time interval (¢, ¢+d¢] when A
detects B first.

ka(f)dt: the probabillty that 4 wins during time interval, (¢, ¢+d¢] when B
detects A first.
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Similar quantities for B can also be defined.

Then, from the fundamental duel of Williams and Ancker [8], we have

(7) ka(t)dt= fl bagan LA (8)dt and Ey*(s) = _1__%

where p, is A’s single shot hit (kill) probability, fs(f) is the pdf of A’s
interfiring time, f,(¢) is the u-fold convoluticn of f4(?) and g4=1—pa.
By definition, we also have
t
(8) kB’(t)dt:fo 25( ). ka(t—y)dydt = (gs*ks) (0)dt.

If both detection function d,3(¢) and kill function k4p’(¢) are defined as

(9) das(t) =d,(0) f T ds(z)dr and k' () =ka(0) f k' (2)dr,

kae(?) and k,.*(s) can be expressed as
(10) kae(tydt= f :[d,,(x) f " da(r)de] - Cka(t—2) f ke ()deldx dt

:ft dap(x) « g’ (t—x)dx dt
0

= (dAB*kAB,) (t)dt,
and

(11) Ere*(s) =dag*(s) - Fas'*(s).
Similarly, k.(¢) and kg*(s) are
(12) ku(t)di= f :[dg(x) f " du(D) ) TR () f " ka(o)drldx di
— (daa*ka's) (1) d1,

and
(13) kar* () =dpa*(s) ~kas"*(5)+
Then, by the definition of P4(T) in equation (1), we obtain

(14) PA(T):f: (Fae(t) +Ea(d)) dt

and
(15) Pa*() = () Thae* () +hu* (5)]

— (%') Cdas*(8). kag’* (5) +dsa*(s). ka’5*(s)]

where dag*(s), dpa*(s), kan’*(s) and kss'*(s) can be derived as follows:
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By definition, d.s*(s) can be written as
(16) dyp*(s) = f : e 5t d, (t) f  dy(r)delde.

Changing the order of integration, it can be rewritten as
(17) das*(s) :f:d;;(r) [fo estd (1) dt)dr.

By the Mellin inversion integral [37,

- | perio dy*(st2
(18) fo ety () di= 5 fc_iw 4 (Z ) & dz

where ¢ is chosen in such a way as to leave all singularities of d,*(s4z) to

the left of the real line z=c,

From equations (17) and (18) we can write
(19) dus*(s) = 7727]: dA*(s+z)[f:e #dy(z)dr _d;_

1 erie w(_ jZ
=y [ 4 s+ 25t (—2) .

Similarly, we have

(20) dps*(s)= -

1 cti® x *(_ dz
- f A G TAIC R

regey L fcﬁw . e iz
D) kap’* ()= I c-imkA G+ k' (—2) :
ctio
B 217-'1. fc‘iook"*(s—f'z) gﬂ*(—‘z) kB*(_z) %-r
and
e+io d
(22) Fas ()= 2712'i f .gA*(5+Z)kA*(S+Z) ks*(—2) ZZ_ .

Evaluation of the inverse transform P,*(s) in equation (15) is generally not
an easy task. Accordingly one may use the numerical inversion techniques of
Dubner and Abate [5] to compute P,(T) from P,*(s).

From the final value theorem in Laplace transform theory, that is,
23) 1 5P ()= 17 Pu(T)

and P,*(s) in equation (15), the probability P(4) that A4 will win when the

duel time is unlimited becomes
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(24) P(4)=1m p,(T)
:DAB-KAB’—I'_DBA'KAB,

where

25) Dan=—g [ da* (D ds* (—2)

c—1

d

Z
poant
A

B 1 c+ie * %[ dz
(26) Dan=—grr [ & (¥ (=) 5,

1 c+i® " w(_ w7 dz
e M OTAICRTAICH RS

(27) Ku'=
(@8) Kismg [ et Ok Dkt (-0-2E

From ecquation (16), Dip= f RO f " dy(r)dr)dt s the probability that
0

A detects B before he is detected when duel time is unlimited. Dgs, K45, and
K5’ are similarly interpreted.

Equations (15) and (24) give general solutions with unspecified detection and
interfiring times. As a special case, when d, (f) and d,*(s) in equations (3)

and (4) are used, P,*(s) and P(A) become

@ Pe6= (3)0 (riia) O+ (i) e )

— dy ) , <__B‘> ,
(30) PUAy= (g ) - K+ ()« K

If equations (5) and (6) are used and inter-glimpse times are assumed to be
negative exponentials, i.c., B4(¢) =B~ and B(t) =Bz, P4*(s) and P(4)

are then given by

@ 1) Par (S) - (—i_> [(TJE:%{ s ) s (S) +< S-}*CKAgABﬁB(XB‘BB )
< ki’ 5* ()
and
6 P = () Fo (o ) o

Similarly for duelist B, P*(s) and P(B) can be obtained, and the probability

P, (T) of a draw when the duel time is limited can be shown to be
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(33) Pas(T)= [ Chae()+ku(®)+hae(D) +Eai(D)] dt.
4, AN EXAMPLE

Let the interfiring and reactive detection times be both negative exponential;
Sa(t)y=rae 4, Sa(t) =rge e,
ga(?) =gae5, gs(t) =gpe™+t.
Then we have

) =—"2 | @)=,

Z+ra Z+7p
* — £ga * —_ 88
WA= 0 o =T
and from epuation (7),
kR () = Tl kot (2) = Tob0__
4 (Z) Z+Tapa ’ 8 (z) Z+73PB'

from these and equations (29)-(33), Pa*(s), Pa(T), Ps(T) and P(4) are

obtained as follows:

o0 peo~(3) e it W awiiens)-
<ﬁm>>+< s+;.’l:+d3 >< S—f—r;fbl—}—gA>

( s+r£firspa )]

From Heaviside expansion theorem [3], we can write

2E (20 =B b

+(-Dry (+)

where L indicates a Laplace transform.
Equation (34) is then inverted to yield
(35) PA(T):CO+CIe-(dA+da)T+C2 g_(TAPA+ra?B)T+C’3 e_(rAPA+EB)T+C4 e“(rapa'*‘EA)T

where

C :( da >< rapa >< rapatrepetgs >+( dy >
0 da+ds Tapatreps Tapatga ds+dp
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><< Tapa )( g4 )
rapatreps )\ rePs+gs)’

C.— dA’A/?A(dA+dB—fAﬁA—TB/?B—gB)
e (ds+dp) (dA’lLdB—TA[?A-gB) (dA+dB_rApA_erB)
dB”APAgA
(da+ds) (da+ds—rapa—ga) (rapatrepp—da—ds),
C.— Tapa [ dAgB ngA J
2T (TAPA+TBPB) (rApA+TBpB_dA_dB) gs—7ppB Sa—7Tapa, ?
___ d r pAerB
C.= ara d
3 (gB—VBﬁB) (dA+dB—TAPA—gB)(TAﬁA+gB) an
04 ds’AﬁAgA

(ga—7raps) (datdp—repn—ga) (repptg4)
Obviously, A’s winning probability P(A4). with unlimited duel time is

(36) P(4) =12 Po(T)=C,
which can also be obtained from equations (24)-(28). We note that the first
part of C, in equation (35) is P.(4) and the second part is P;(A).

The probability P,s(T) of a draw can be shown to be

(37) Pap(T)=C\ ¢ “utddTL O ¢~ Cabatrapn T C,l ¢ Tata* 8 T4 () 2080 T

where

C.’ — 7AﬁA(TBﬁB+gA‘dA)
L (dA—f‘dB—fAﬁA—TBﬁB)(dA—f‘dB—TBPB—gA)

TBPB(TAﬁA*f“gB—dB)
(dA+dA—’AP—YBﬁB) (dat-ds—rapa—gs) ,

C. — 1 [ ngA + dAga J
2 (dA+dB"‘rApA_erB) ga—Tapa gs—Tpps

+

darep
C [ A"BFB d
3 (gB—’Bf?B) (rApA"|“gB"dA_dB) an
c,/ = dBTAﬁA

YT (ea—rapa) (rabstea—da—ds)
For duelist B, Pr(B) and P(B) are obtained by simply replacing subscripts A4
with B in equations (34)-(36).
For the case of negative exponential inter-glimpe times, P,(T), Pu(T) and

P(4) are evaluated by substituting a,8, for d, and @,8s for dj in equations

(34)-(37).
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Following observations are made on P(4) of equation (36) as follows:

(i) If ga=gs=0, we have P(4)= —d”*. That is, initial detection ability
datds
conclusively determines the winner since the detected has no chance of finding
his opponent. Conversely, if gs=gp=00, P(4)= Taba =P;(A), where
Tapat+reps

P;(A) is A’s winning probability of the “fundamental” duel. This means that
the duelist who detects his opponent first has no firing time advantage since the
opponent returns fire immediately and simultaneously.

(i1) If dyg=dp=0, we have P(4)=P(B)=0. This means that a conbatant
can not defeat his opponent because his target is not acquired at all. On the
other hand if dy=o00, dzy=0, we have P(4)=1 when gz=0 and P(4)=P;(A4)
when gy=c0.

(iiif) The probabilities P(A), P.(4) and P;(4) in equation (36) are plotted
in Fig. 2. It is seen that these quantities vary according to initial and reactive
detection rates, Here kill rates are assumed to be fixed and equal to unity(r,p,

=rgpp=1) to focus our attention to the detection capabilities.

— da-dB
--= da= 20R
\‘:\ , PeAy T da= 17248

Fig. 2. Kill effects on detection
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2) As gn gao00, Po(d), Pi(d)—r, P(A)—>F when dy=ds,
1 1 1 —
P.(4) >3, Pi(d)—¢, P(4) -5 when d =2ds,
Po(d)—L Pl)—L, P(A)—L when d,=2d
e 6’ i 3 2 A 2 B-
b) The winning probabilities are sensitive to detection rates less than 5 since
initial detection has no time advantage for firing if reactive detection time
becomes sufficiently small.

c) P.(4) shifts upward and P;(4) shifts downward as A’s initial detection

rate increases.
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