THE LATTICE DISTRIBUTIONS INDUCED BY THE SUM OF
I.I.D. UNIFORM (0, 1) RANDOM VARIABLES

BY C. J. PARK AND H. Y. CHUNG

1. Summary.
Let X_1, X_2, \ldots, X_n be i.i.d. uniform (0, 1) random variables. Let $f_n(x)$ denote the probability density function (p.d.f.) of $T_n = \sum_{i=1}^{n} X_i$. Consider a set $S(x; \delta) = \{x \in \mathbb{R} : x = \delta + j, j = 0, 1, \ldots, n-1, 0 \leq \delta \leq 1\}$. The lattice distribution induced by the p.d.f. of T_n is defined as follow:

$$f_n^{(\delta)}(x) = \begin{cases} f_n(x) & \text{if } x \in S(x; \delta) \\ 0 & \text{otherwise.} \end{cases}$$

In this paper we show that $f_n^{(\delta)}(x)$ is a probability function thus we obtain a family of lattice distributions $\{f_n^{(\delta)}(x) : 0 \leq \delta \leq 1\}$, that the mean and variance of the lattice distributions are independent of δ.

2. Main Results:
Let $f_n(x)$ be the p.d.f. of T_n, then $f_n(x)$ can be written, See Wilks [1962].

$$f_n(x) = \frac{1}{(n-1)!} \sum_{i=0}^{n-1} (-1)^i \binom{n}{i} (x-i)^{n-1},$$

where

$$x_+ = \begin{cases} x & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$$

First we show that $f_n^{(\delta)}(x)$ defined by (1) is probability function.

THEOREM 1. Let $f_n^{(\delta)}(x)$ be a function defined in (1). Then

$$\sum_{x \in S(x; \delta)} f_n^{(\delta)}(x) = 1.$$

Proof: Using (2), we can write

Received by the editors Apr. 30, 1978.
By rearranging the summation it can be shown that

\[\sum_{j=0}^{n-1} (-1)^{j} \binom{n}{j} (j-i)^{n-1-k} = 0 \quad \text{if} \quad 0 < k \leq n-1 \]
\[\sum_{j=0}^{n-1} (-1)^{j} \binom{n}{j} (n-1-j)^{n-1-k} = (n-1)! \quad \text{if} \quad k = 0 \]

Hence the conclusion of theorem 1 follows.

Note that the expression (3) is a polynomial in \(\delta \) of degree \((n-1) \) and the coefficients of \(\partial^{k} \), for \(k \geq 1 \), vanish.

To obtain the moments of probability function \(f_{n}^{(3)}(x) \), we need the following lemma.

LEMMA: For any positive integer \(m \) and \(r \), we have

\[\sum_{i=0}^{m} \sum_{j=0}^{r} (-1)^{j} \binom{m+1}{i} (\delta+j-i)^{r} = \sum_{i=0}^{r} \binom{r}{q} \partial^{q} \sum_{i=0}^{m} (-1)^{j} \binom{m}{l} (m-l)^{r-q} \]
\[= \sum_{i=0}^{r} \binom{r}{q} \partial^{q} \sum_{i=0}^{m} S(m, i) \]

where \(S(t, m) \) is Stirling number of the second kind defined by

\[n! S(r, n) = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (n-j)^{r} \]
\[t^{n} = \sum_{r=0}^{n} t^{(r)} S(r, n), \quad \text{where} \quad t^{(r)} = t(t-1) \cdots (t-r+1). \]

Now we evaluate the \(k \)-th moment of the probability function \(f_{n}^{(3)}(x) \)

\[\mu_{k} = (1/(n-1)!) \sum_{j=0}^{n-1} \sum_{i=0}^{k-1} (-1)^{j} \binom{n}{i} (\delta+j-i)^{n-1}(\delta+j)^{k} \]
\[= \frac{1}{(n-1)!} \sum_{j=0}^{n-1} \sum_{i=0}^{k-1} (-1)^{j} \binom{n}{i} (\delta+j-i)^{n-1} \sum_{l=0}^{k} \binom{k}{l} (\delta+j-i)^{k-l} i^{l} \]
\[= \frac{1}{(n-1)!} \sum_{l=0}^{k} \binom{k}{l} \sum_{r=0}^{l} S(l, r) \sum_{j=0}^{r-1} \sum_{i=0}^{l-1} (-1)^{j} \binom{n}{i} (\delta+j-i)^{n+k-l-1} i^{r} \]
The lattice distributions induced by the sum of i.i.d. uniform (0,1) random variables

\[
\sum_{q=0}^{n+k-1-q} \sum_{j=0}^{n-j-q} (-1)^j \binom{n-r-1}{j} (n-r-j)^{n+k-1-q-j} \times
\]

\[
\sum_{r=0}^{l} S(l, r) (-1)^r n^r \sum_{i=0}^{n+k-1-q} \binom{k}{i} \frac{(n+k-1-l)}{q} \times
\]

\[
\sum_{r=0}^{l} S(l, r) (-1)^r n^r \sum_{i=0}^{n+k-1-q} \binom{k}{i} \frac{(n+k-1-l)}{q} \times
\]

\[
\sum_{r=0}^{l} S(l, r) (-1)^r n^r \sum_{i=0}^{n+k-1-q} (n-r-1)! S(t, n-r-1)
\]

Using (6) in conjunction with the properties of Stirling number of the

second kind, the following theorem can be established.

Theorem 2: The mean and variance of the p.f. \(f_n^{(\delta)}(x) \) is independent of \(\delta \) if \(n \geq k+1 \) for \(k=1, 2 \). That is,

\[\mu = \mu_1' = n/2, \quad \mu_2' = n(3n+1)/12, \quad \text{and} \]

\[\sigma^2 = \mu_2' - \mu^2 = n/12.\]

We note that the mean and variance of \(f_n^{(\delta)}(x) \), \(\delta \neq 0 \), is same as the

mean and variance of \(f_n^{(0)}(x) \), for \(n \geq 3 \).

However we have not obtained \(\mu_2' \) for \(k \geq 3 \) and can not conclude whether

or not they are also independent of \(\delta \). It would be interesting to find the

set of values of \(k \) such that the \(k \)-th moment of \(f_n^{(\delta)}(x) \) is independent of \(\delta \).

Acknowledgement: We wish to thank Mr. Byung Sun Choi for his de­
tailed checking on our original computations. The authors wish to thank
referees for their valuable comments.

References.

1. Riordan, John (1958). *An Introduction to Combinatorial Analysis.* Wiley, New

 York.

Seoul National University