SOME REMARKS ON DCS/x SPACES

BY JOO HO KANG

1. Introduction.

In paper [2], N. L. Levine proved that for an invertible spaces certain local properties become global properties.

V. M. Klassen introduced DCS space and DCS/x space. DCS/x space has the above property. We investigate some properties in DCS/x spaces.

DEFINITION 1.1. [1]. A topological space X is said to have the disappearing closed set (DCS) property or to be a DCS space, if for every proper closed subset C there is a family of open sets $\{U_i\}_{i=1}^{\infty}$ such that $U_{i+1} \subseteq U_i$ and $\bigcap_{i=1}^{\infty} U_i = \emptyset$, and there is also a sequence $\{h_i\}_{i=1}^{\infty}$ of homeomorphisms on X onto X such that $h_i(C) \subseteq U_i$ for all i.

DEFINITION 1.2. [1]. A topological space X is said to have DCS/x property or to be a DCS/x space, if for every proper closed subset C which miss x there exist two sequences $\{U_i\}_{i=1}^{\infty}$ and $\{h_i\}_{i=1}^{\infty}$ satisfying the DCS property.

2. Main results.

LEMMA 2.1. For every neighborhood P of x there is a sequence $\{h_i\}_{i=1}^{\infty}$ of homeomorphisms on X onto X such that $\bigcup_{i=1}^{\infty} h_i(P) = X$.

Proof. Let $\{U_i\}_{i=1}^{\infty}$ be a decreasing sequence of open sets in X such that $\bigcap_{i=1}^{\infty} U_i = \emptyset$ and $\{h_i\}_{i=1}^{\infty}$ a sequence of homeomorphisms in X such that $h_i(X-P) \subseteq U_i$ for each i. Then $X - \bigcup_{i=1}^{\infty} h_i(P) \subseteq \bigcap_{i=1}^{\infty} U_i$, so $X \subseteq \bigcup_{i=1}^{\infty} h_i(P)$ since $\bigcap_{i=1}^{\infty} U_i = \emptyset$.

THEOREM 2.2. If P satisfies the first axiom of countability then X satisfies the first axiom of countability.

Proof. Let $a \in X$ and U be an open neighborhood of a. Let $\{h_i\}_{i=1}^{\infty}$ be a sequence of homeomorphisms in X such that $\bigcup_{i=1}^{\infty} h_i(P) = X$. Then $a \in h_{i_0}(P)$ for some integer i_0 and thus $h_{i_0}^{-1}(a) \in P$. Let $\{U_j\}_{j=1}^{\infty}$ be a countable open
base of $h_0^{-1}(a)$ in P. Then $h_0^{-1}(a) \subseteq U_j \cap h_0^{-1}(U) \cap P$ for some integer j. Hence \{ $h_0(U_j) | j=1, 2, \ldots$ \} is a countable open base for a in X.

Theorem 2.3. If P satisfies the second axiom of countability, then X satisfies the second axiom of countability.

Proof. Let \{ U_i \}$_{i=1}^{\infty}$ be a countable base in P and let \{ h_j \}$_{j=1}^{\infty}$ be a sequence of homeomorphisms in X such that $\bigcup_{j=1}^{\infty} h_j(P) = X$. Then \{ $h_j(U_i) | i, j=1, 2, \ldots$ \} is a countable base in X since \{ $h_j(U_i) | i=1, 2, \ldots$ \} is a base in $h_j(P)$ for each j.

Theorem 2.4. If P is a Lindelöf subspace of X then X is Lindelöf.

Proof. Let \{ U_a \} be an open covering of X and let \{ h_i \}$_{i=1}^{\infty}$ be a sequence of homeomorphisms in X such that $\bigcup_{i=1}^{\infty} h_i(P) = X$. Since P is Lindelöf, $h_i(P)$ is Lindelöf for each i. Then there is a countable open subcovering \{ $U_i^j | j=1, 2, \ldots$ \} of \{ U_a \} such that $h_i(P) \subseteq \bigcup_{j=1}^{\infty} U_i^j$ for each i. Therefore \{ $U_i^j | i, j=1, 2, \ldots$ \} is a countable open subcovering of \{ U_a \} such that $\bigcup_{i,j} U_i^j = X$.

Lemma 2.5. If P (or \overline{P}) is a connected subspace of X then P (or \overline{P}) is not clopen subset of X.

Proof. Suppose P is closed subset of X. Then $h_i(P)$ is clopen subset of X for each i, where \{ h_i \}$_{i=1}^{\infty}$ is a sequence of homeomorphisms in X for $X-P$. Then $X=\bigcup_{i=1}^{\infty} h_i(P)$ and X is disjoint union. Hence there exists an integer i_0 such that $x \in h_{i_0}(P)$ and $x \not\in X \cup h_i(P)$. That is, $x \in X-h_i(P)$ for each $i \neq i_0$. Let \{ U_i \}$_{i=1}^{\infty}$ be a decreasing sequence of open sets in X such that $\bigcap_{i=1}^{\infty} U_i = \phi$ for $X-P$. Then $x \in h_i(X-P) \subseteq U_i$ for each $i \neq i_0$. Since \{ U_i \} is decreasing sequence, $x \in \bigcap_{i=1}^{\infty} U_i$. It is contradict to $\bigcap_{i=1}^{\infty} U_i = \phi$.

From the above lemma we obtain the following theorem.

Theorem 2.6. If P or \overline{P} is connected subspace of X then X is connected.

Proof. Assume that X is disconnected. Then there is a nonempty proper clopen subset O of X. O is neither P nor \overline{P} by Lemma 2.5. Since $X=\bigcup_{i=1}^{\infty} h_i(P)$ and $\phi \neq 0 \subseteq X$, there exists an i_0 such that $\phi \neq h_{i_0}(P) \cap 0 \subseteq h_{i_0}(P)$. Suppose $h_i(P) \supset h_i(P) \cap O$ for all i, then $h_i(P) \supset O$ for all i, so $X=0$. Hence
Some remarks on DCS/x spaces

Theorem 2.7. If \(\bar{P} \) is regular and some \(U_n \) is regular then \(X \) is regular, where \(\{U_n\} \) is a sequence in \(X \) for \(X-P \) by DCS/x property.

Proof. Let \(a \in X \) and \(C \) a closed in \(X \) such that \(a \notin C. \)

Case I: \(C \subset X-P \). (i) \(a \in X-P \). Since \(U_n \) is regular and \(h_n(a), h_n(C) \subset U_n \), there exists two disjoint neighborhoods \(U, V \) of \(h_n(a), h_n(C) \) in \(U_n \) respectively. Hence \(h_n^{-1}(U) \) and \(h_n^{-1}(V) \) are disjoint neighborhoods of \(a, C \) in \(X \) respectively. (ii) \(a \in P \). Put \(C_1 = C \cap \bar{P} \). If \(C_1 = \phi \), then \(a \in P \). \(C \subset X-P \) and \(X-P \) are disjoint opens in \(X \). If \(C_1 \neq \phi \), then there are two disjoint opens \(U', V' \) in \(P \) such that \(a \in U' \) and \(C \subset V' \). Let \(U, V \) be opens in \(X \) such that \(U' = U \cap \bar{P} \) and \(V' = V \cap \bar{P} \). Then \(a \in U \cap P \) and \(U \cap P \) \(\cup (X-P) \) are disjoint opens in \(X \).

Case II: \(C \cap P \neq \phi \). (i) \(a \in P \). This case is same to case I, (ii). (ii) \(a \in \bar{P}-P \). Let \(C_1 = C \cap P \), \(C_2 = C \cap (X-P) \). Then there are two disjoint neighborhoods \(U_1', V_1' \) of \(a, C \) in \(\bar{P} \) respectively and two disjoint neighborhoods \(U_2, V_2 \) of \(a, C \) in \(X \) respectively. Let \(U_1 \) and \(V_1 \) are opens in \(X \) such that \(U_1' = U \cap \bar{P} \) and \(V_1' = V \cap \bar{P} \). Then \(U_1 \cap U_2 \) \(\cup (V_1 \cap P) \) are disjoint opens in \(X \) such that \(a \in U_1 \cap U_2 \) and \(C \subset V_2 \cup (V_1 \cap P) \). (iii) \(a \in X-\bar{P} \). Let \(U, V \) are two disjoint neighborhoods of \(a \) and \(C \) in \(X \). Then \(U \cap (X-\bar{P}) \) and \(V \cap P \) are two disjoint open neighborhoods of \(a, C \) in \(X \).

Case III: \(C \subset P \). (i) \(a \in \bar{P} \). Let \(U', V' \) be disjoint neighborhoods of \(a, C \) in \(\bar{P} \) respectively and let \(U, V \) be two opens in \(X \) such that \(U' = U \cap \bar{P} \) and \(V' = V \cap \bar{P} \). Then \(U \cap V \) are disjoint opens in \(X \) such that \(a \in U \) and \(C \subset V \). (ii) \(a \in X-\bar{P} \). \(X-\bar{P} \) and \(P \) are disjoint neighborhoods of \(a, C \) in \(X \) respectively.

Theorem 2.8. If \(\bar{P} \) is normal and some \(U_n \) is normal, then \(X \) is normal, where \(\{U_n\} \) is a sequence in \(X \) for \(X-P \) by DCS/x property.

Proof. Let \(C_1, C_2 \) be disjoint closed subsets of \(X \).

Case I: \(C_1, C_2 \subset X-P \). Since \(h_n(C_1), h_n(C_2) \subset U_n \) and \(h_n(C_1) \cap h_n(C_2) = \phi \), we can take two disjoint neighborhoods of \(C_1, C_2 \) in \(X \).

Case II: \(C_2 \cap P \neq \phi \). Let \(F_1 = C_1 \cap \bar{P}, F_2 = C_2 \cap \bar{P}, G_1 = C_1 \cap (X-P) \) and \(G_2 = C_2 \cap (X-P) \). Let \(U_1', V_1' \) be disjoint neighborhoods of \(F_1, F_2 \) in \(\bar{P} \) and \(U_2, V_2 \) be disjoint neighborhoods of \(G_1, G_2 \) in \(X \). (i) \(C_1 \subset X-P \). (\(U_1 \cap U_2 \) \(\cup (U_2 \cap (X-\bar{P})) \)) and \(V_2 \cup (V_1 \cap P) \) are disjoint neighborhoods of \(C_1, C_2 \) in \(X \), where \(U_1, U_2 \) are opens in \(X \) such that \(U_1' = U_1 \cap \bar{P} \) and \(V_1' = V_1 \cap \bar{P} \). (ii) \(C_1 \cap P \neq \phi \). Put \(W_1 = U_1 \cap P, W_1' = V_1 \cap P, W_2 = U_1 \cap U_2, W_2' = V_1 \cap V_2 \), and...
Then \(C_1 \subset W_1 \cup W_2 \cup W_3 \), \(C_2 \subset W'_1 \cup W'_2 \cup W'_3 \), \(W_1 \cup W_2 \cup W_3 \), \(W'_1 \cup W'_2 \cup W'_3 \) are disjoint opens in \(X \). (iii) \(C_1 \subset P \). \(W_1 \cup (X-P) \) are disjoint open neighborhoods of \(C_1 \), \(C_2 \) in \(X \) respectively.

Case III; \(C_2 \subset P \). (i) \(C_1 \subset P \). It is trivial.
(ii) \(C_1 \cap P \neq \emptyset \). It is same to Case II (iii).
(iii) \(C_1 \subset X - P \). \((U_1 \cap P) \cup (X - P)\) and \(V_1 \cap P\) are two disjoint neighborhoods of \(C_1 \), \(C_2 \) in \(X \).

Theorem 2.9. If \(X \) and \(Y \) are topological spaces with \(DCS/x \) property and \(DCS/y \) property respectively, then \(X \times Y \) is \(DCS/(x, y) \) space.

Proof. Let \(C \) be a proper closed subset of \(X \times Y \) such that \((x, y) \notin C \), and let \(x \in P \subset X \), \(y \in Q \subset Y \) be open sets in \(X \) and \(Y \), respectively, such that \((x, y) \in P \times Q \subset (X \times Y) - C \). Let \(\{U_i\}_{i=1}^{\infty}, \{h_i\}_{i=1}^{\infty} \) and \(\{V_i\}_{i=1}^{\infty}, \{k_i\}_{i=1}^{\infty} \) be the open sets and homeomorphisms for \(X - P \) and \(Y - Q \) in \(X \) and \(Y \), respectively. We define a sequence of homeomorphisms in \(X \times Y \)

\[
\phi_i(a, b) = \{h_i(a), k_i(b)\} \text{ for each } (a, b) \in X \times Y,
\]

and

\[
\{W_i\}_{i=1}^{\infty} = \{(U_i \times Y) \cup (X \times V_i)\}_{i=1}^{\infty}.
\]

Then \(\{W_i\}_{i=1}^{\infty} \) is a decreasing sequence of open sets in \(X \times Y \) such that \(\bigcap_{i=1}^{\infty} W_i = \emptyset \).

Since \(C \subset (X \times Y) - (P \times Q) = \{(X - P) \times Y\} \cup \{X \times (Y - Q)\} \), \(\phi_i(C) \subset \{h_i(X - P) \times Y\} \cup \{X \times k_i(Y - Q)\} \subset (U_i \times Y) \cup (X \times V_i) = W_i \) for each \(i = 1, 2, \ldots. \)

Hence \(X \times Y \) is \(DCS/(x, y) \) space.

Theorem 2.10. If \(P \) is a separable subspace of \(X \) then \(X \) is separable.

Proof. Let \(A \) be a countable dense subset of \(P \), and let \(\{h_i\}_{i=1}^{\infty} \) be a sequence of homeomorphisms in \(X \) such that \(\bigcup_{i=1}^{\infty} h_j(P) = X \). Then \(D = \bigcup_{i=1}^{\infty} h_i(A) \) is a countable dense subset of \(X \) since \(h_i(A) \) is a countable dense subset of \(h_i(P) \) for each \(i \).

References

Some remarks on DCS/\(x\) spaces

Kyungpook University