Let R be a commutative ring with 1. We shall denote the category consisting of all R-modules and R-homomorphisms by $M(R)$. Then $M(R)$ is a complete and cocomplete category, and also it is a C_3-category with a projective generator R ([3], p. 73). Therefore $M(R)$ has enough injectives ([2], p. 262). Let $\text{End}(R)$ be the category of all R-endomorphisms, and let $\text{Idm}(R)$ be the full subcategory of $\text{End}(R)$ whose objects are idempotents. In [1], Hou proved that $\text{End}(R)$ and $\text{Idm}(R)$ have enough projectives. Let $\text{Idm-Iso}(R)$ be the full subcategory of $\text{Idm}(R)$ whose objects are isomorphisms. The purpose of this paper is to prove that

(i) $\text{End}(R)$ is complete and cocomplete, and so is $\text{Idm}(R)$ (Theorem 7 and Corollary 8),

(ii) $\text{Idm-Iso}(R)$ has enough injectives (Theorem 11), and to prove a property about $\text{Idm}(R)$ (Proposition 9).

1. Definitions in $\text{End}(R)$

It is well known that for each object α of $\text{End}(R)$ there exists a unique object A of $M(R)$ such that α belongs to $\text{hom}(A, A)$, where $\text{hom}(A, A)$ is an abelian group consisting of all R-module homomorphisms from A to itself. A morphism $f: \alpha \to \beta$ in $\text{End}(R)$ is an R-module homomorphism such that $f\alpha = \beta f$, where $\alpha \in \text{hom}(A, A)$ and $\beta \in \text{hom}(B, B)$.

Definition 1. A morphism $f: \alpha \to \beta$ ($\alpha \in \text{hom}(A, A)$ and $\beta \in \text{hom}(B, B)$) in $\text{End}(R)$ is said to be a monomorphism if $f: A \to B$ is a monomorphism in $M(R)$. Dually, a morphism $f: \alpha \to \beta$ in $\text{End}(R)$ is an epimorphism if $f: A \to B$ is an epimorphism in $M(R)$.

For a morphism $f: \alpha \to \beta (f: A \to B \text{ in } M(R))$ in $\text{End}(R)$ the kernel of f is defined by $\alpha \mid \text{Ker}(f) : \text{Ker}(f) \to \text{Ker}(f)$, where $\text{Ker}(f)$ is the kernel of $f: A \to B$ in $M(R)$. Similarly, the image of f in $\text{End}(R)$ is defined by $\beta \mid \text{Im}(f)$, where $\text{Im}(f)$ is the image of $f: A \to B$ in $M(R)$.

The cokernel $\bar{\beta}: B/\text{Im}(f) \longrightarrow B/\text{Im}(f)$ of $f: \alpha \to \beta$ in $\text{End}(R)$ is defined by
\[\beta(b + \text{Im}(f)) = \beta(b) + \text{Im}(f) \]

for \(b + \text{Im}(f) \in B/\text{Im}(f) \).

With the above notions we can easily prove that the categories \(\text{End}(R) \), \(\text{Idm}(R) \) and \(\text{Idm-Iso}(R) \) are abelian (\([1]\)).

Definition 2. A subobject \(\beta : B \rightarrow B \) in \(M(R) \) of \(\alpha \in \text{End}(R) \) (\(\alpha : A \rightarrow A \) in \(M(R) \)) is an object of \(\text{End}(R) \) satisfying (i) \(B \) is a submodule of \(A \) in \(M(R) \). (ii) \(\beta = \alpha | B \). The intersection of subobjects \(\beta \) and \(\gamma : C \rightarrow C \) in \(M(R) \) is \(\alpha | B \cap C \). It is easy to prove that

Proposition 3. For a morphism \(f : \alpha \rightarrow \beta \) the kernel of \(f \) is a subobject of \(\alpha \), and the image of \(f \) is a subobject of \(\beta \).

Definition 4. In \(\text{End}(R) \), consider a diagram

\[
\begin{array}{ccc}
\alpha' & \rightarrow & \beta' \\
\downarrow & & \downarrow \\
\alpha & \rightarrow & \beta \\
\end{array}
\]

where \(f \) is any morphism and the vertical morphisms are monomorphisms. In this case, the subobject \(\alpha' \) is said to be carried into the subobject \(\beta' \) by \(f \) if there is a morphism \(\alpha' \rightarrow \beta' \) making the above diagram is commutative.

The union of a family \(\{\alpha_i\}_{i=1} \) of subobjects of an object \(\alpha \) is defined as a subobject \(\alpha' \) of \(\alpha \), denoted by \(\alpha' = \cup \alpha_i \), which is preceded by each of the \(\alpha_i \), and which has the following property: If \(f : \alpha \rightarrow \beta \) and each \(\alpha_i \) is carried into some subobject \(\beta' \) by \(f \), then \(\alpha' \) is also carried into \(\beta' \) by \(f \). In this case, if \(\alpha_i : A_i \rightarrow A_i \) in \(M(R) \), then

\[\cup \alpha_i : \cup A_i \rightarrow \cup A_i \]

where for \(a_i \in A_i \subseteq \cup A_i \), \(\cup \alpha_i(a_i) = \alpha_i(a_i) \).

Proposition 5. In \(\text{End}(R) \), for any direct family \(\{\alpha_i\} \) of subobjects of \(\alpha \) and any subobject \(\beta \) of \(\alpha \)

\[(\cup \alpha_i) \cap \beta = \cup (\alpha_i \cap \beta). \]

Proof. For each \(i \) we put \(\alpha_i : A_i \rightarrow A_i \), where \(A_i \) is a submodule of \(A \) in \(M(R) \). By a direct family \(\{\alpha_i\} \) we mean that \(A_i \cap A_j = \{0\} \), if \(i \neq j \). Then

\[\bigoplus \alpha_i = \alpha | \bigoplus A_i = \alpha | \cup A_i = \cup \alpha_i. \]

Since \((\cup A_i) \cap B = \cup (A_i \cap B) \) we have

\[\alpha | (\cup A_i) \cap B = \alpha | (\cup A_i \cap B) \]
PROPOSITION 6. The category $\text{End}(R)$ has equalizers, and so has the category $\text{Idm}(R)$.

Proof. If $f, g : \alpha \rightarrow \beta$ are morphisms in $\text{End}(R)$, then in $M(R)$ we have the commutative diagrams:

$\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow \alpha \quad \downarrow \beta \\
A \xrightarrow{g} B
\end{array}$

Put $K = \{a \in A | f(a) = g(a)\}$, then K is a submodule of A. If we shall define $\gamma : K \rightarrow K$ by $\gamma = \alpha | K$ then the inclusion $K \rightarrow A$ is a morphism $\gamma \rightarrow \alpha$ in $\text{End}(R)$. Then, it is easily proved that $\gamma \rightarrow \alpha$ is an equalizer for f and g.

2. Main results

THEOREM 7. $\text{End}(R)$ is complete and cocomplete.

Proof. Let $\{ \beta \rightarrow \alpha_i \}_{i \in I}$ be a compatible family for D. Then, for all $m \in M$ and $d(m) = (i, j)$ there is a commutative diagram:

$\begin{array}{c}
\alpha_i \\
\downarrow g_i \\
B \\
\downarrow D(m) = f_{ij} g_i = g_j \\
\downarrow A_j
\end{array}$

such that $\alpha_j f_{ij} = f_{ij} \alpha_i$, $\alpha_i g_i = g_i \beta$ and $\alpha_j g_j = g_j \beta$ where $\beta : B \rightarrow B$ and $\alpha_i : A_i \rightarrow A_i$ in $M(R)$. Therefore we have a compatible family $\{B \rightarrow A_i\}_{i \in I}$ for D in $M(R)$. In this case

$\bigcap_{m \in M} \text{Equ}(P_h, D(m) P_j) \subset \prod_{k \in I} A_h P_k$ A_i

is a limit for D in $M(R)$. Let us define $\times A_h \rightarrow \times A_h$ such that $(\times A_h) | A_h = \alpha_h$ where $\alpha_h \in \text{hom}(A_h, A_h)$. Then $\times A_h$ is a product of the family $\{\alpha_i\}_{i \in I}$ in $\text{End}(R)$. Since

$\bigcap_{m \in M} \text{Equ}(P_h, D(m) P_j) \subset \times A_h$ (§3 p. 47)

we can put $\times A_h = \bigcap_{m \in M} \text{Equ}(P_h, D(m) P_j)$

where for all $h \in I$.

Define

\[\times (\alpha_k | A_k') : \times A_k' \longrightarrow \times A_k \]

then \(\times (\alpha_k | A_k') \) is a limit for \(D \) in \(\text{End}(R) \) by the following reasons.

At first, we have the commutative diagram for all \(i \in I \):

\[
\begin{array}{ccc}
\times A_k' & \overset{p_i|A_i'}{\longrightarrow} & A_i \\
\downarrow \times (\alpha_k | A_k') & & \downarrow \alpha_i \\
\times A_k & \overset{p_i|A_i}{\longrightarrow} & A_i
\end{array}
\]

Since it is easy to see that \(\alpha_i|\times a_k' = (\times a_k') = (p_i|A_i') (\times (\alpha_k | A_k')) \)
\((\times a_k') \) for \(\times a_k' \in \times A_k' \), and that \(\{p_i|A_i' : \times (\alpha_k | A_k') \longrightarrow \alpha_i \}_{i \in I} \)

is a compatible family for \(D \) in \(\text{End}(R) \).

Next, for a compatible family \(\{g_i : \beta \longrightarrow \alpha_i\} \) we have a unique \(R \)-module homomorphism \(h : B \longrightarrow \times A_k' \) satisfying the commutative diagram (for all \(i \in I \)):

\[
\begin{array}{ccc}
B & \overset{h}{\longrightarrow} & \times A_k' \\
\downarrow g_i & & \downarrow \beta \\
\times A_k & \overset{h}{\longrightarrow} & \times (\alpha_k | A_k')
\end{array}
\]

in which \(h = \times g_h \), i.e. for all \(b \in B \) \(h(b) = \times g_h(b) \in \times A_k' \). Moreover the diagram

\[
\begin{array}{ccc}
B & \overset{h}{\longrightarrow} & \times A_k' \\
\downarrow \beta & & \downarrow (\times \alpha_k | A_k') \\
B & \overset{h}{\longrightarrow} & \times A_k'
\end{array}
\]

is commutative since \(\alpha_i g_i = g_i \beta \). It means that there exists a unique morp-

hism \(h : \beta \longrightarrow \times (\alpha_k | A_k') \) such that for all \(i \in I \) \(g_i = (p_i|A_i')h \). For a cocomp-
A note on the category $\text{End}(R)$

Atible family $\{\alpha_i \to \gamma\}_{i \in I}$ ($\alpha_i : A_i \to A_i$ and $\gamma : C \to C$ in $M(R)$) we see that $A_i \mathop{\xrightarrow{u_i}} \bigoplus_{h \in I} A_h \mathop{\xrightarrow{\bigcup_{m \in M} (u_k - u_j D(m))}} \bigoplus_{h \in I} \text{Im}(u_k - u_j D(m))$ ([3], p. 47) is a colimit for D in $M(R)$. Put

$$\overline{A}_i = A_i / \bigcup_{m \in M} (u_k - u_j D(m))$$

for all $i \in I(A_i \subset \bigoplus A_i)$. Then

$$\bigoplus_{h \in I} \text{Im}(u_k - u_j D(m)) = \bigoplus_{h \in I} \overline{A}_h$$

Define

$$\bigoplus \bar{a}_h : \bigoplus_{h \in I} \overline{A}_h \to \bigoplus_{h \in I} \overline{A}_h$$

such that for $a_i + \bigcup_{m \in M} (u_k - u_j D(m)) \in \overline{A}_i$

$$(\bigoplus \bar{a}_h) (a_i + \bigcup_{m \in M} (u_k - u_j D(m))) = a_i (a_i) + \bigcup_{m \in M} (u_k - u_j D(m)).$$

Let $\bar{u}_i : A_i \to \bigoplus_{h \in I} \overline{A}_h$ be induced from the ith injection $u_i : A_i \to \bigoplus_{h \in I} A_h$ for all $i \in I$. Then we have the commutative diagram

$$\begin{array}{ccc}
A_i & \longrightarrow & \bigoplus_{h \in I} \overline{A}_h \\
\alpha_i \downarrow & & \downarrow \bigoplus \bar{a}_h \\
A_i & \longrightarrow & \bigoplus_{h \in I} \overline{A}_h
\end{array}$$

which means that $\bar{u}_i : \alpha_i \to \bigoplus \bar{a}_h$ is a morphism of $\text{End}(R)$.

We can prove that $\{\alpha_i \to \bigoplus \bar{a}_h\}$ is a colimit for D by the same way as in the above proof with respect to limit. Hence $\text{End}(R)$ is complete and cocomplete.

COROLLARY 8. The category $\text{Idm}(R)$ is also complete and cocomplete.

Proof. In the category $\text{Idm}(R)$, let $\{\beta \to \alpha_i\}_{i \in I}$ be a compatible family for a diagram over a scheme $\Sigma = (I, M, d)$ where $\alpha_i : A_i \to A_i$ and $\alpha_i^2 = \alpha_i$ in $M(R)$ for all $i \in I$. Then its limit and colimit for D are $\bigotimes_{h \in I} (\alpha_i | A_i')$ and $\bigotimes_{h \in I} \bar{a}_h$, respectively (see proof of Theorem 7), because $$(\bigotimes_{h \in I} (\alpha_i | A_i'))^2 = \bigotimes_{h \in I} (\alpha_i^2 | A_i')$$

$= \bigotimes_{h \in I} \bar{a}_h$ and $$(\bigotimes_{h \in I} \bar{a}_h)^2 = \bigotimes_{h \in I} \bar{a}_h.$$
PROPOSITION 9. In the category $\text{Idm}(R)$, if $\{f_i: \beta \to \alpha_i\}_{i \in I}$ is a compatible family, then so are $\{\alpha_i f_i: \beta \to \alpha_i\}_{i \in I}$ and $\{f_i \beta: \beta \to \alpha_i\}_{i \in I}$.

Proof. For $i \in I$ we assume that $\alpha_i: A_i \to A_i$ and $\beta: B \to B$ in $\text{M}(R)$. For each $(i, j) \in I \times I$ we have to verify that the diagrams

\[
\begin{array}{ccc}
B & \xrightarrow{\alpha_i f_i} & A_i \\
\downarrow{\beta} & & \downarrow{\alpha_i} \\
B & \xrightarrow{\alpha_i f_i} & A_i \\
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
B & \xrightarrow{\alpha_i f_i} & A_i \\
\downarrow{f_{ij}} & & \downarrow{\alpha_i f_i} \\
A_j & \xrightarrow{\alpha_i f_i} & A_i \\
\end{array}
\]

are commutative. Since $\alpha_i^2 = \alpha_i$, $\beta = \beta$, $f_{ij} f_i = f_{ij}$, $f_i \beta = \alpha_i f_i$ and $\alpha_i f_{ij} = f_{ij} \alpha_i$ we have

$\alpha_i \alpha_i f_i = \alpha_i f_i \beta = \alpha_i f_i$ and $f_{ij} \alpha_i f_i = \alpha_i f_{ij}$.

For $\{f_i \beta: \beta \to \alpha_i\}$ we can prove it by the same way as above.

PROPOSITION 10. If $\alpha \in \text{Idm-Iso}(R)$ then α is an identity map.

Proof. By the definition of α we have $\alpha^2 = \alpha$. Since α is an isomorphism there exists the inverse α^{-1} of α. Thus $\alpha^{-1} \alpha^2 = \alpha^{-1} \alpha = 1$.

THEOREM 11. The category $\text{Idm-Iso}(R)$ has enough injectives.

Proof. Noting that the category $\text{M}(R)$ has enough injectives, it suffices to prove that $\text{M}(R)$ and $\text{Idm-Iso}(R)$ are isomorphic.

By Proposition 9 the object class of $\text{Idm-Iso}(R)$ is the class $\{1_A | A \in \text{M}(R)\}$.

For 1_A and 1_B in $\text{Idm-Iso}(R)$ it is easily see that $\text{hom}(1_A, 1_B) = \text{hom}(A, B)$, where $\text{hom}(1_A, 1_B)$ is the R-module of all morphisms from 1_A to 1_B in $\text{Idm-Iso}(R)$. Therefore the functor $F: \text{M}(R) \to \text{Idm-Iso}(R)$ defined by $F(A) = 1_A$ for $A \in \text{M}(R)$ is an isomorphism. Thus $\text{Idm-Iso}(R)$ has enough injectives.

NOTE: It is well known that $\text{M}(R)$ has a generator R. But 1_R is not a generator of $\text{End}(R)$ and $\text{Idm}(R)$. If $f: \alpha \to \beta$ ($\neq 0$) is a morphism in $\text{End}(R)$ or $\text{Idm}(R)$ we can not insure existence of a morphism $g: 1_R \to \alpha$ such that $fg \neq 0$ and $\alpha g = g$. Even if $\text{End}(R)$ and $\text{Idm}(R)$ are C_3-categories (by Proposition 5, Theorem 7 and corollary 8), maybe they do not have enough injectives.

References

Chungnam National University