LOCALLY ORDER-CONVEX SPACES.

By V. Murali

0. Abstract

The first part of this note is concerned with a neighbourhood base characterisation of locally order-convex spaces. The notions of order-$*$-inductive limits and order ultrabornologicity in the class of locally order-convex spaces are introduced and studied in the latter part. These are the non-convex generalisation of o-inductive limits and o-bornological spaces.

1. Introduction

A locally order-convex space is a partially ordered vector space together with a linear topology for which there exists a base of neighbourhoods of the origin consisting of order-convex and balanced subsets. Kist [3] studied locally o-convex (order-convex and convex) spaces. Iyahen [2] developed concepts of $*$-inductive limits and ultrabornological spaces in the general topological vector spaces setting. The objects of this note are to define and give some results on order $*$-inductive limits and on order ultrabornological properties of locally order-convex spaces, using analogous techniques of Iyahen [2] (thus generalising the results of Kist [3]).

In section 2, we define an analogue of a suprabarrel in a topological vector space and use it to prove some basic results on locally order-convex spaces. Section 3 is devoted to the results on the finest locally order-convex topologies making certain positive linear mappings continuous (that is, order $*$-inductive limits) and on the finest locally order-convex topologies on a partially ordered vector spaces. In the last section, we study those locally order-convex spaces E which have the property that every positive linear mapping of E with range in any locally order-convex space is continuous.

Regarding the theory of topological vector spaces we refer to Horvath [1] and for those undefined order-theoretic terms we refer to Schaefer [5].

2. Locally order-convex spaces

DEFINITION 2.1. A subset U of a partially ordered vector space (E, C) is called
an order-convex suprabarrel (hereafter abbreviated to o-suprabarrel) if \(U \) is balanced, absorbent and order-convex and, if there exists a sequence \((U_n) \) of balanced, absorbent and order-convex subsets of \(E \) such that \(U_1 + U_1 \subseteq U \) and \(U_{n+1} + U_{n+1} \subseteq U_n \) for all \(n \). If, in addition, \(U \) is closed we call it an order-convex ultrabarrel (o-ulrabarrel). We call \((U_n)(n=1,2,\ldots) \) a defining sequence for \(U \).

It is immediate that balanced, absorbent, o-convex subsets of a partially ordered vector space \((E, C) \) are o-suprabarrels. However, an o-suprabarrel need not be o-convex and need not have a defining sequence of o-convex sets. Intersection of a finite number of o-suprabarrels is an o-suprabarrel. If \(U \) is a suprabarrel in \((E, C) \), then \([U]\), the order-convex hull of \(U \) is an o-suprabarrel. The inverse image of an o-suprabarrel by a positive linear mapping is an o-suprabarrel. The image of an o-suprabarrel by a positive linear mapping is an o-suprabarrel provided the mapping is onto.

DEFINITION 2.2. An \(F \)-semi-norm \(\nu \) on a partially ordered vector space \((E, C) \) is called monotone if \(\nu(x) \leq \nu(y) \) whenever \(0 \leq x \leq y \) in \(E \).

Let \(U \) be an o-suprabarrel with a defining sequence \((U_n) \) \((n=1,2,\ldots) \) in a partially ordered vector space \((E, C) \). By the method of construction on page 3 of Wealbroeck [6], we can associate an \(F \)-semi-norm \(\nu \) with \(U \), as follows:

\[
\nu(y) = \inf\{\beta : y \in W_\beta, \ (y \in E) \}
\]

where \(W_\beta = E \) for \(\beta \geq 1 \) and \(W_\beta = \sum_{t=1}^{n} U_k \) for every dyadic rational \(\beta = \sum_{k=1}^{n} t_k 2^{-k} \). Suppose \(E \) has the decomposition property, then \(W_\beta \) is order-convex, as it is the sum of order-convex sets \(U_k \). Hence \(y \in W_\beta \) and \(0 \leq x \leq y \) imply \(x \in W_\beta \). That is, \(\nu(x) \leq \nu(y) \) whenever \(0 \leq x \leq y \).

Thus an \(F \)-semi-norm associated with an o-suprabarrel is monotone provided \(E \) has the decomposition property.

DEFINITION 2.3. (Wong and Ng [7]) A linear topology \(\tau \) on a partially ordered vector space \((E, C) \) is said to be locally order-convex if it admits a neighbourhood base at 0 consisting of order-convex sets; in this case, we shall say \((E, C, \tau) \) is a locally order-convex space.

REMARK. Locally order-convex topologies were first considered by Namioka [4]. He called these topologies locally full.

The following proposition gives an useful characterisation of a neighbourhood base at the origin in a locally order-convex space.

PROPOSITION 2.4. In a locally order-convex space, there exists a base of
neighbourhoods at origin consisting of o-suprabarrels; Conversely, let (E,C) be a partially ordered vector space and let \mathcal{W} be a filter base at the origin consisting of o-suprabarrels with their defining sequences. Then there exists a unique vector topology τ on E for which E is a locally order-convex space and for which \mathcal{W} is a base of τ-neighbourhoods at the origin.

Proof is straightforward.

COROLLARY 2.5. The collection of all o-suprabarrels in a partially ordered vector space (E,C) is a neighbourhood base for the finest locally order-convex topology on E.

For certain class of partially ordered topological vector spaces, the notion of locally order-convexity is equivalent to a condition in terms of continuous F-semi-norms. We shall make this precise in the next theorem, but first we require a lemma due to Namioka [4, p.19].

LEMMA 2.6. Let (E,C,τ) be a partially ordered topological vector space. Then the following are equivalent.

1. The space (E,C,τ) is locally order-convex;
2. Given a τ-neighbourhood U of zero, there exists a τ-neighbourhood V of zero such that $0 \leq x \leq y$ for some y in V implies $x \in U$.

THEOREM 2.7. Let (E,C,τ) be a partially ordered topological vector space with decomposition property. Then the following statements are equivalent.

1. τ is a locally order-convex topology.
2. The family of all τ-continuous monotone F-semi-norms determines the topology τ.

PROOF. (1)\Rightarrow(2). Let $\{\nu_i\}$ $(i \in I)$ be the family of all τ-continuous monotone F-semi-norms, and τ' be the topology generated by $\{\nu_i\}$ $(i \in I)$. It is easy to see that τ' is coarser than τ. We now show that τ is coarser than τ'. Let U be a balanced τ-neighbourhood of the origin. Since τ is locally order-convex, there exists an o-suprabarrel V contained in U. By the remark preceding definition 2.3, the F-semi-norm ν_V of V, is τ-continuous and monotone. Also, $\{x \in E : \nu_V(x) < 1\} \subset V \subset U$; so U is a τ'-neighbourhood, as required.

(2)\Rightarrow(1). Let U be a τ-neighbourhood of 0. Then there exists a finite number $\{\nu_i\}$ $(i=1, 2, \ldots, n)$ of monotone F-semi-norms such that $V = \{x \in E : \max_{i=1,2,\ldots,n} \nu_i(x) < \varepsilon : 0 < \varepsilon < 1\} \subset U$. V satisfies the property (2) of Lemma 2.6.
and so \((E,C,\tau)\) is locally order-convex.

It is useful to note that there is a method available, for constructing locally order-convex topologies from vector topologies on partially ordered vector spaces. We shall not describe it here but refer to [7, p.56].

We conclude this section with a remark on the finest locally order-convex topology. Let \(e\) be an order-unit in a partially ordered vector space \((E,C)\). Then the set \([-e,e]\) is balanced, convex, and absorbing. Hence the Minkowski functional \(\nu_e\) of \([-e,e]\) is a semi-norm on \(E\). Kist in [3] observed that the topology \(\tau_e\) induced by \(\nu_e\) on \(E\) is the finest locally \(\sigma\)-convex topology. We claim that \(\tau_e\) coincides with the finest locally order-convex topology \(\tau\) on \(E\); in fact, if \(V\) is any balanced order-convex \(\tau\)-neighbourhood of the origin in \(E\), then \(V\) is absorbing. So there exists a \(\lambda>0\) such that \(\lambda e \in V\), implying \(\lambda [-e,e] \supset V\) Hence \(V\) is a \(\tau_e\)-neighbourhood.

3. Order \(\ast\)-inductive limits

Let \((E,C)\) be a partially ordered vector space, and \((E_i,C_i,\tau_i)\) a family of locally order-convex spaces, \((i \in I)\). Let \(f_i\) be a positive linear mapping from \(E_i\) into \(E\) for each \(i \in I\). Then the order \(\ast\)-inductive limit (hereafter abbreviated to \(\sigma\)-\(\ast\)-inductive limit) topology on \(E\) with respect to the family \((E_i,C_i,\tau_i):f_i\) is defined to be the finest locally order-convex topology on \(E\) for which all the positive linear mapping \(f_i\)'s are continuous.

PROPOSITION 3.1. \(\tau\) always exists on \(E\).

PROOF. Let \(\mathcal{L}\) be the set of all locally order-convex topologies on \(E\). The topology \(\eta = \{\phi, E\}\) is locally order-convex and is the least element of \(\mathcal{L}\). Since finite intersections of \(\sigma\)-suprabarrels is an \(\sigma\)-suprabarrel, the supremum of an arbitrary non-empty family of locally order-convex topologies is again locally order-convex. Let \(\mathcal{L}_0\) be the subset of \(\mathcal{L}\) consisting of those topologies for which each positive linear mapping \(f_i\) is continuous. \(\mathcal{L}_0\) is non-empty since \(\eta \in \mathcal{L}_0\) and the supremum of \(\mathcal{L}_0\) which also belongs to \(\mathcal{L}_0\) is obviously the required topology.

The space \(E\) equipped with the \(\sigma\)-\(\ast\)-inductive limit topology is called the \(\sigma\)-\(\ast\)-inductive limit.

We observe that the \(\sigma\)-\(\ast\)-inductive limit topology on \(E\) is a linear topology, and so weaker than the strongest linear topology on \(E\) relative to which all
Locally Order-Convex Spaces.

the f_i's are continuous, that is, the linear *-inductive limit topology as defined in [2, p. 286]. Thus the two topologies coincide if and only if, the linear *-inductive limit topology on E is locally order-convex. At present, we do not have an example to show that the two topologies are distinct.

Proposition 3.2. Let (E_i, C_i, τ_i) $(i \in I)$ be a family of locally order-convex spaces; For each $i \in I$, let f_i be a positive linear mapping of E_i into a partially ordered vector space (E, C). Let $Z = \{U\}$ be the collection of all o-suprabarrels of E with the property that, for each $i \in I$, $f_i^{-1}(U)$, $f_i^{-1}(U_n)$ $(n=1, 2, \ldots)$ are τ_i-neighbourhoods of 0 in E_i, where U_n is a defining sequence of U. Then Z is a base of neighbourhoods of 0 in E for the o-*$-inductive limit topology with respect to the locally order-convex spaces (E_i) and the positive linear mappings (f_i).

Proof. Clearly, Z forms a base of neighbourhoods of 0 in E for a locally order-convex topology τ' on E, by proposition 2.4. If W is a base of balanced, order-convex neighbourhoods of 0 for any other locally order-convex topology τ'' on E for which all the f_i's are continuous, then each $W \in W'$ is absorbing, o-suprabarrel in E. It is straightforward to check that $W \in Z$, and so $W \subseteq Z$ from which it follows that $\tau'' \subseteq \tau'$. Thus τ' is the strongest such topology and therefore τ' is the o-*$-inductive limit topology on E.

Corollary 3.3. If (F, γ) is a locally order-convex space and if g is a positive linear mapping of E into F, then g is continuous with respect to the o-*$-inductive limit topology τ on E if and only if, $g \circ f_i$ is continuous for each $i \in I$.

Proof. If g is continuous, then clearly the mappings $g \circ f_i$ are all continuous. Conversely, suppose g is a positive linear mapping such that $g \circ f_i$ is continuous for each $i \in I$. Let U_0 be any balanced order-convex η-neighbourhood of the origin in F. Choose a sequence of balanced, order-convex γ-neighbourhoods $\{U_n\}$ $(n=1, 2, \ldots)$ such that $U_n + U_n \subseteq U_{n-1}$, $(n=1, 2, \ldots)$. Then $g^{-1}(U_0)$ is a balanced, absorbing o-suprabarrel in E, with a defining sequence $\{g^{-1}(U_n)\}$ $(n=1, 2, \ldots)$. Also $f_i^{-1}(g^{-1}(U_n)) = (g \circ f_i)^{-1}(U_n)$ is a τ_i-neighbourhood of 0 in E_i for each $i \in I$ and $n=0, 1, 2, \ldots$ Thus, by proposition 2.3, $g^{-1}(U_0)$ is a τ-neighbourhood of 0 in E and so g is continuous.

Let (E, C) be a partially ordered vector space. For each $a \in E$ with $a \geq 0$, let

$$E_a = \bigcup_{i \in I} \{x : x \in E, -la \leq x \leq la\}$$

\[C_a = E_a \cap C. \]

Then \(E_a \) is a subspace and \(a \) is an order-unit for \((E_a, C_a) \). Let \(\tau_a \) be the locally order-convex topology on \(E_a \) induced by the semi-norm \(\nu_a \) of \([-a,a] \) in \(E_a \).

Then we have the following analogue of proposition 5.2 [3].

Theorem 3.4. Let \((E, C, \tau) \) be a locally order-convex space. Then \(\tau \) is the finest order-convex topology on \(E \) if and only if \((E, C, \tau) \) is the \(o \)-*-inductive limit of \((E_i, C_i, \tau_i) \) for \(a \in E \), with respect to inclusion mappings \(i_a \).

Proof. Necessity. Let \(V \) be any balanced, order-convex \(\tau \)-neighbourhood of \(0 \) in \((E, C) \). Then \(V \) is an \(o \)-superbarrel with a defining sequence \((V_n) \) (\(n=1, 2\ldots \)), say. The sets \(V \cap E_a \), \(V_n \cap E_a \) for each \(a \in E \), \(n=1, 2\ldots \), are balanced, order-convex and absorbing. Moreover \(V_n \cap E_a + V_n \cap E_a \subseteq V_{n-1} \cap E_a \) (\(n=2, 3\ldots \)), and \(V_1 \cap E_a + V_1 \cap E_a \subseteq V \cap E_a \) for each \(a \in E \). That is \(V \cap E_a \) is an \(o \)-superbarrel in \(E_a \) for each \(a \in E \). Since \(\tau_a \) is the finest locally order-convex topology in \(E_a \), \(V \cap E_a \) are \(\tau_a \)-neighbourhoods of origin in \(E_a \). Hence \(V \) is an \(o \)-*-inductive limit neighbourhood, by proposition 3.2.

Sufficiency. Let \(V \) be any \(o \)-superbarrel in \((E, C) \), with a defining sequence \((V_n) \). Then it is obvious that \(i_a^{-1}(V) = V \cap E_a \) (\(i_a^{-1}(V_n) = V_n \cap E_a \) (\(n=1, 2\ldots \))) is an \(o \)-superbarrel in \(E_a \) for \(a \in E \), and so a \(\tau_a \)-neighbourhood in \(E_a \). Also for each \(n=1, 2\ldots \), \(V_n \cap E_a \) is an \(o \)-superbarrel in \(E_a \) and hence a \(\tau_a \)-neighbourhood.

The proposition 3.2, now implies \(V \) is a neighbourhood in the order \(\ast \)-inductive limit topology. Therefore, the order \(\ast \)-inductive limit topology coincides with the finest order-convex topology by Corollary 2.5.

We conclude this section with an useful analogue of proposition 2.2 of [2].

Theorem 3.5. Let \((E, C, \tau) \) be the order \(\ast \)-inductive limit of a family of locally order-convex spaces \((E_i, C_i, \tau_i) \) (\(i \in I \)) with respect to positive linear mappings \((f_i) \). For each \(i \in I \), let \(V_i \) be a balanced, order-convex \(\tau_i \)-neighbourhood of \(0 \) in \(E_i \), and let \(U \) be the order-convex hull of \(\bigcup_{\emptyset \neq i \in \Phi} f_i(V_i) \) the union being taken over all finite subsets \(\Phi \) of \(I \). Then \(U \) is a \(\tau \)-neighbourhood of \(0 \) in \(E \).

If \(I \) is countable, then as \(V_i \) runs through a base of balanced, order-convex \(\tau_i \)-neighbourhoods of \(0 \) in \(E_i \), the order-convex hull of the above sets form a base of \(\tau \)-neighbourhoods of \(0 \) in \(E \).

Proof. Let \(U = \bigcup_{\emptyset \neq i \in \Phi} f_i(V_i) \) as given in From Iyahan [2], we know that
U is a neighbourhood in the $*$-inductive limit topology η. Since the order-convex hull $[U]$ of U is a neighbourhood in the finest order-convex topology coarser than η, it follows $[U]$ is a τ-neighbourhood. Similarly, the second part of the theorem follows from the corresponding part of proposition 2.2 of [2].

Since the $*$-inductive limit of a sequence of locally convex spaces is locally convex, and the order-convex hull of a convex set is σ-convex (see Kist [3]), we have the following:

Corollary 3.6. The o-α-inductive limit of a sequence of locally σ-convex spaces, is locally σ-convex, and thus coincides with the o-inductive limit. (See Kist [3]).

4. o-ultrabornological spaces

Definition 4.1. A locally order-convex space E is called o-ultrabornological (o-ultrabornological) if every bounded positive linear mapping from E into any locally order-convex space is continuous.

We conjecture that the attributes of ultrabornological and o-ultrabornological are distinct when applied to the class of locally order-convex space. But we are unable to substantiate this. Also, at present, we do not know whether an o-bornological space as defined by Kist [3], is o-ultrabornological or not.

However, the class of o-ultrabornological space is non-empty, as it contains metrisable locally order-convex spaces. In particular, if the topology τ of a partially ordered topological vector space (E,C) is given by a single monotone F-semi-norm, then (E,C,τ) is o-ultrabornological.

The following concept is important in the study of o-ultrabornological space.

Definition 4.2. A subset B of a partially ordered topological vector space (E,C,τ) is called a bornivorous o-suprabarrel if B is a balanced, bornivorous, order-convex subset of E and if there exists a sequence (B_n) of balanced, bornivorous, order-convex subsets of E such that $B_1+B_1 \subseteq B$ and $B_{n+1}+B_{n+1} \subseteq B_n$ for $n=1,2,\ldots$.

The next theorem gives the connection between o-ultrabornological spaces and bornivorous o-suprabarrel subsets.

Theorem 4.3. Let τ_1 be a locally-order-convex topology on a partially ordered vector space (E,C). Then

1. The family of all bornivorous o-suprabarrels in (E,C,τ_1) is a base of neighbourhoods of 0 for a finer locally order-convex topology τ_2 on E.

Locally Order-Convex Spaces.
2. The topologies τ_1 and τ_2 have the same bounded subsets.
3. The space (E, C, τ_1) is o-ultrabornological if and only if $\tau_1 = \tau_2$.
4. and this is so, if and only if every bornivorous o-suprabarrel in (E, τ_1) is a τ_1-neighbourhood of origin.

The proofs are straightforward.

With some simple modifications of the proofs of proposition 4.1 and Theorem 4.1 of Iyahen [2], we obtain the following analogues.

PROPOSITION 4.4. A set of positive linear mappings form an o-ultrabornological space into a locally order-convex space is equicontinuous provided that it is uniformly bounded on bounded sets.

THEOREM 4.5. Any o-∞-inductive limit of o-ultrabornological spaces is o-ultrabornological.

By some easy calculations, we can prove the following corollaries of Theorem 4.5.

COROLLARY 4.6. If F is a closed subspace of an o-ultrabornological space E, then E/F is o-ultrabornological.

COROLLARY 4.7. If f is a continuous, open, positive linear mapping of an o-ultrabornological space E onto a locally order-convex space F, then F is o-ultrabornological.

COROLLARY 4.8. Any countable o-inductive limit of locally o-convex o-ultrabornological spaces is o-ultrabornological.

DEFINITION 4.9. A subset A of a linear space is called semi-convex if there is some $\lambda \geq 0$ for which $A + \lambda A$.

DEFINITION 4.10. We say that a partially ordered topological vector space is almost order-convex if every bounded subset is contained in some bounded set which is closed, balanced, semi-convex and order-convex.

Clearly every locally o-convex space is almost order-convex and so is any partially ordered topological vector space whose topology is given by a bounded, order-convex neighbourhood of the origin.

The next theorem, an analogue of proposition 6.3 (e) of Kist [3], is a partial converse of theorem 4.5.

THEOREM 4.11. Let (E, C, τ) be an almost order-convex o-ultrabornological
Locally Order-Convex Space

space, and let \(\mathcal{U} \) be the class of all closed, bounded, semi-convex, balanced, and order-convex subsets of \(E \). For each \(B \in \mathcal{U} \), let \(E_B \) be the linear subspace generated by \(B \). Then

1. \(E_B \) is a partially ordered vector space.

2. There exists a \(p \)-normed, locally order-convex topology \(\tau_B \) on \(E_B \), for a suitable \(0 < p \leq 1 \).

3. \((E, C, \tau) \) is the \(o \)-inductive limit of \((E_B, \tau_B) (B \in \mathcal{U}) \) with respect to the inclusion mappings \(i_B \).

PROOF. 1. Take \(C_B = C \cap E_B \) as the positive cone of \(E_B \).

2. Since \(B \) is balanced and semi-convex, there exists a \(\lambda \geq 2 \) such that \(B + B \subseteq \lambda B \). Put \(p = \log 2 / \log \lambda \) and for \(x \in E_B \), define \(\nu_B(x) = \inf(\lambda^p : x \in \lambda B) \). It is easy to check that \(\nu_B \) is a \(p \)-norm on \(E_B \). The topology \(\tau_B \) given by \(\nu_B \) is the required topology.

3. Let \(U \) be a \(\tau \)-neighbourhood of \(0 \) in \(E \). Then for each \(B \in \mathcal{U} \), \(\lambda B \subseteq U \) for some \(\lambda > 0 \) implying \(\lambda B \subseteq U \cap E_B \). So \(i_B : (E_B, \tau_B) \longrightarrow (E, \tau) \) is continuous for each \(B \in \mathcal{U} \). Moreover, let \(\tau_0 \) be any locally order-convex topology on \(E \) for which each \(i_B \) is continuous. Then it is not difficult to show that \(\tau_0 \) coincides with \(\tau \) as \((E, \tau) \) is almost order-convex \(o \)-ultrabornological. This completes the proof.

Department of Pure Mathematics,
University College of Wales, Aberystwyth,
Wales, U. K.

REFERENCES

24, (1957).