A NOTE ON PERIPHERALLY \mathfrak{M}-PARACOMPACT SPACES

By M.K. Singal and Shashi Prabha Arya

In [1] E.E. Grace introduced the concept of peripherally paracompact spaces. In the present paper we introduce and study peripherally \mathfrak{M}-paracompact spaces. Also, by making use of some other concepts introduced by E.E. Grace [1], we obtain some characterisations of \mathfrak{M}-paracompact spaces. A result due to D.R. Traylor [4] for paracompactness in regular spaces, has also been extended to \mathfrak{M}-paracompactness in normal spaces.

DEFINITION 1. A family \mathcal{A} of open subsets of a space X is said to have property \mathcal{P} in the strong sense (resp. in the weak sense) if \mathcal{A} has the property \mathcal{P} as a collection of open sets in X (resp. in the subspace $\cup\{A : A \in \mathcal{A}\}$ of X).

DEFINITION 2. A space X is said to be peripherally \mathfrak{M}-paracompact in the strong sense (resp. in the weak sense) if for each frontier set (that is, each nowhere dense, closed set) F in X and each open covering \mathcal{U} of X of cardinality $\leq \mathfrak{M}$, there is an open refinement \mathcal{V} of \mathcal{U}, covering F, which is locally finite in the strong sense (resp. in the weak sense).

THEOREM 1. A space X is \mathfrak{M}-paracompact if and only if it is peripherally \mathfrak{M}-paracompact in the strong sense.

PROOF. Only the if part need be proved. Let \mathcal{G} be any open covering of X of cardinality $\leq \mathfrak{M}$. Let \mathcal{H} be a family of mutually disjoint open sets refining \mathcal{G} such that $H^* = \bigcup\{H : H \in \mathcal{H}\}$ is dense in X. Then, $X \sim H^*$ is a nowhere closed set. Let \mathcal{F} be a locally finite, open refinement of \mathcal{G} covering the frontier set $X \sim H^*$ and let \mathcal{A} be a locally finite, open refinement of \mathcal{F} covering the boundary of $E^* = \bigcup\{E : E \in \mathcal{F}\}$. Consider now, the family $\mathcal{H} = \{H \cap (X - E^*) : H \in \mathcal{H}\}$. It is easy to verify that \mathcal{H} is a discrete family of open sets and that $\mathcal{H} \cup \mathcal{F} \cup \mathcal{A}$ is a locally finite open refinement of \mathcal{G} which covers X and hence X is \mathfrak{M}-paracompact.

THEOREM 2. A normal space X is peripherally \mathfrak{M}-paracompact in the strong sense iff it is peripherally \mathfrak{M}-paracompact in the weak sense.
PROOF. Let \mathcal{C} be any open covering of X of cardinality $\leq \mathfrak{m}$ and let F be any frontier subset of X. If X is peripherally \mathfrak{m}-paracompact in the weak sense, then there exists an open refinement \mathcal{H} of \mathcal{C} covering F which is locally finite at each point of $H^* = \bigcup \{H, H \in \mathcal{H}\}$. Since X is normal, and F and $X \sim H^*$ are disjoint closed sets, therefore exists an open set $W : F \subseteq W \subseteq X \sim H^*$. Let $\mathcal{W} = \{W \cap H, H \in \mathcal{H}\}$. Then \mathcal{W} is a locally finite open refinement of \mathcal{C} which covers F and hence X is peripherally \mathfrak{m}-paracompact in the strong sense.

DEFINITION 3. A family \mathcal{F} of continuous functions on a space X into the non-negative real numbers is called a partition of unity on X if for each point $x \in X, \sum f(x) = 1$. \mathcal{F} is said to be subordinated to a covering \mathcal{U} of X if for each $f \in \mathcal{F}, f(X \sim U) = \{0\}$ for some $U \in \mathcal{U}$.

THEOREM 3. A normal space X is \mathfrak{m}-paracompact iff for every open covering \mathcal{C} of X of cardinality $\leq \mathfrak{m}$ and for every frontier set F, there exists an open refinement \mathcal{H} of \mathcal{C}, covering F and which has a partition of unity subordinated to it in the weak sense.

PROOF. To prove the 'if' part, let \mathcal{C} be any open covering of X of cardinality $\leq \mathfrak{m}$. Let \mathcal{H} be a family of disjoint open sets refining \mathcal{C} such that $H^* = \bigcup \{H, H \in \mathcal{H}\}$ is dense in X. Then $X \sim H^*$ is a frontier set. By hypothesis, there exists an open refinement \mathcal{W} of \mathcal{C} which covers $X \sim H^*$ and which has a partition of unity Φ subordinated to it in the weak sense. Since X is normal, and $X \sim H^*$ and $X \sim \bigcup \{W, W \in \mathcal{W}\}$ are disjoint closed sets, therefore, there exists a continuous function $g : X \rightarrow [0, 1]$ such that $g(X \sim H^*) = \{1\}$ and $g(X \sim \bigcup \{W, W \in \mathcal{W}\}) = \{0\}$. For each $f \in \Phi$, let $f(x) = f(x) \cdot g(x)$ for $x \in \bigcup \{W, W \in \mathcal{W}\}$ and let $f'(x) = 0$ for $x \in X \sim \bigcup \{W, W \in \mathcal{W}\}$. For each $H \in \mathcal{H}$, there exists a continuous function: $g_H : X \rightarrow [0, 1]$ such that $g_H(X \sim H) = \{0\}$ and $g_H(H \sim g^{-1}(0)) = \{1\}$. Let h be defined as

$$h(x) = \begin{cases} \sum_{f \in \Phi} f(x), & \text{if } x \in X \sim H^* \\ \sum_{f \in \Phi} f(x) + g_H(x), & \text{if } x \in H^*. \end{cases}$$

Then \mathcal{C} has the partition of unity $\Phi = \{f/h, f \in \Phi \cup \{g_H/h, H \in \mathcal{H}\}\}$ subordinated to it. Thus, every open covering of X of cardinality $\leq \mathfrak{m}$ has a partition of unity subordinated to it and hence X is \mathfrak{m}-paracompact [2, theorem 2]. Converse is obviously true, [2, theorem 2].
THEOREM 4. For a normal space X, the following are equivalent:

(a) X is \mathcal{M}-paracompact.

(b) For every covering \mathcal{U} of X of cardinality $\leq \mathcal{M}$ and for each frontier set F in X, there is an open refinement \mathcal{V} of \mathcal{U} covering F, such that \mathcal{V} is cushioned in \mathcal{U} in the strong sense.

(c) For every open covering \mathcal{U} of X of cardinality $\leq \mathcal{M}$ and for each frontier set F in X, there is an open refinement \mathcal{V} of \mathcal{U} covering F, such that \mathcal{V} is cushioned in \mathcal{U} in the weak sense.

(d) For every open covering \mathcal{U} of X of cardinality $\leq \mathcal{M}$ and for each frontier set F in X, there is an open refinement \mathcal{V} of \mathcal{U} covering F, such that \mathcal{V} is σ-cushioned in \mathcal{U} in the weak sense.

(e) For each every open covering \mathcal{U} of X of cardinality $\leq \mathcal{M}$ and for each frontier set F in X, there is an open refinement \mathcal{V} of \mathcal{U} covering F, such that \mathcal{V} is σ-cushioned in \mathcal{U} in the strong sense.

PROOF. (a) \implies (b). Every open covering \mathcal{U} of X of cardinality $\leq \mathcal{M}$ will have an open, cushioned refinement in view of Theorem 1 and hence (b) is true.

(b) \implies (c) Obvious

(c) \implies (d) Obvious

(d) \implies (e). Since X is normal, a proof similar to theorem 2 applies.

(e) \implies (a). This follows in a manner similar to the proof of theorem 1.

DEFINITION 4. A space X is said to be \mathcal{M}-paracompact in a discrete peripheral sense if for every open covering \mathcal{U} of X of cardinality $\leq \mathcal{M}$ there exists an open refinement \mathcal{V} of \mathcal{U} such that if \mathcal{F} be any discrete family of closed set refining \mathcal{V}, then the boundary of $\bigcup \{ F : F \in \mathcal{F} \}$ is \mathcal{M}-paracompact with respect to the space X.

DEFINITION 5. A space X is said to be subparacompact if for every open covering \mathcal{G} of X, there exists a sequence $\{ \mathcal{F}_i : i = 1, \ldots \}$ of discrete families of closed sets such that $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is a refinement of \mathcal{G}.

THEOREM 4. If X is a normal, subparacompact space which is countably paracompact in a discrete peripheral sense, then X is countably paracompact.

PROOF. Essentially the same as that of ([4], theorem 5) Traylor states the theorem with 'semi-method' instead of 'subparacompact'. However, while
proving the theorem, only subparacompactness is being used. It should be noted that every normal, semi-metric space is perfectly normal and a perfectly normal space is always countably paracompact. So the theorem becomes obvious with subparacompact replaced by semi-metric.

THEOREM 5. If X is a normal, subparacompact space which is \mathfrak{B}-paracompact in a discrete peripheral sense, then X is \mathfrak{B}-paracompact.

PROOF. Since X is \mathfrak{B}-paracompact in a discrete peripheral sense, therefore, X is countably paracompact in a discrete peripheral sense. Then X is countably paracompact by theorem 4. Now, let $\mathcal{U} = \{U_\alpha : \alpha \in A\}$ be any open covering of X of cardinality $\leq \aleph_\omega$. Let A be well ordered by \prec. Let \mathcal{U}' be an open refinement of \mathcal{U} covering X such that the boundary of the union of each discrete family of closed sets refining \mathcal{U}' is \mathfrak{B}-paracompact with respect to X. Since X is subparacompact, there exists a sequence $\{\mathcal{F}_i : i \in \mathbb{N}\}$ of discrete families of closed sets. For each $\alpha \in A$, let $\mathcal{F}_1\alpha$ denote the subfamily of \mathcal{F}_1 consisting of all sets $G \in \mathcal{F}_1\alpha$ for which α is the first index such that $G \subseteq U_\alpha$. If $G \in \mathcal{F}_1\alpha$ for some α, denote by V_α an open set which contains boundary of G such that $V_\alpha \supset U_\alpha$ and V_α does not intersect $[(\cup \{F : F \in \mathcal{F}_1\}) \sim G]$. Denote by $\mathcal{F}_1\alpha$ the family consisting of all sets V such that there exists $G \in \mathcal{F}_1\alpha$ such that $V = V_\alpha$. Since boundary of $\cup \{F : F \in \mathcal{F}_1\}$ is \mathfrak{B}-paracompact and $\mathcal{F}_1\alpha = \cup \mathcal{F}_1\alpha$ is a covering of the boundary of $\cup \{F : F \in \mathcal{F}_1\}$; therefore, there exists a locally finite open refinement \mathcal{F}_1' of \mathcal{F}_1 such that \mathcal{F}_1' covers boundary of $\cup \{F : F \in \mathcal{F}_1\}$. Now, denote by \mathcal{F}_2 the family consisting of all sets V for which there is a $G \in \mathcal{F}_1\alpha$ such that $x \in V$ iff either $x \in G$ or x is a point of a member of $\mathcal{F}_1\alpha$ which intersects G. Clearly, \mathcal{F}_2 is an open refinement of \mathcal{U}' which covers $\cup \{F : F \in \mathcal{F}_1\}$. Now consider $\mathcal{F}_2\alpha$. Denote by $\mathcal{F}_2\alpha$ the family consisting of all sets G such that there exists $H \in \mathcal{F}_2\alpha$ such that $G = H \sim [H \cap (\cup \{V : V \in \mathcal{F}_1\})]$. Clearly, $\mathcal{F}_2\alpha$ is discrete family of closed sets refining \mathcal{U}'. For each $\alpha \in A$, denote by $\mathcal{F}_2\alpha$ the subfamily of $\mathcal{F}_2\alpha$ consisting of only those sets each of which is a subset of U_α but none is a subset of U_β for $\beta < \alpha$. If $G \in \mathcal{F}_2\alpha$, denote by V_α an open set containing the boundary of G such that $H_\alpha \subseteq V_\alpha$, V_α does not intersect $[(\cup \{F : F \in \mathcal{F}_2\}) \sim G]$. Let $\mathcal{F}_2\alpha$ denote the family consisting of all sets V for which there is a $G \in \mathcal{F}_2\alpha$ such that $V = V_\alpha$. Let $\mathcal{F}_2 = \cup \mathcal{F}_2\alpha$. As before, there exists a locally finite, open refinement \mathcal{F}_2.
of \(Y'_2 \) which covers the boundary of \(\bigcup \{ F : F \in \mathcal{F}_2 \} \) and thus there is a locally finite open refinement \(Y''_2 \) of \(Z' \) such that \(Y''_2 \) covers \(\bigcup \{ F : F \in \mathcal{F}_2 \} \). This process may be continued indefinitely as follows: for each positive integer \(n > 2 \), denote by \(\mathcal{F}'_n \) the collection which consists of all sets \(G \) for which there is a \(H \in \mathcal{F}_n \) such that \(G = H \sim (H \cap \bigcup \{ V : V \in Y''_i, i = 1, \ldots, n-1 \}) \).

Clearly, \(\mathcal{F}'_n \) is a discrete family of closed sets such that \(\mathcal{F}'_n \) refines \(Z' \). As before, denote by \(\mathcal{F}_{2a} \) the subfamily of \(\mathcal{F}'_n \) consisting of just those sets each of which is a subset of \(U_{\alpha} \) but none is a subset of \(U_{\beta} \) for \(\beta < \alpha \). For \(G \in \mathcal{F}_{2a} ' \), let \(V_G \) denote an open set containing the boundary of \(G \) such that \(V_G \supseteq U_{\alpha} \). \(V_\alpha \) does not intersect \(\bigcup \{ F : F \in \mathcal{F}_i, i = 1, \ldots, n-1 \} \) and also does not intersect \(\bigcup \{ F : F \in \mathcal{F}_i \} \). \(Y_{mn} \) denotes the family consisting of those sets \(G \in \mathcal{F}_{ma} \) such that \(V = V_G \) and if \(\mathcal{Y}_n = \bigcup A_{ma} \), then there exists a locally finite, open refinement \(\mathcal{Y}'_n \) of \(\mathcal{Y}_n \) such that \(\mathcal{Y}'_n \) covers the boundary of \(\bigcup \{ F : F \in \mathcal{F}_n \} \) and thus there is a locally finite open refinement \(\mathcal{Y}''_n \) of \(Z' \) such that \(\mathcal{Y}''_n \) covers \(\bigcup \{ F : F \in \mathcal{F}_n \} \). Now, \(\bigcup_{n=1}^{\infty} \mathcal{Y}''_n \) is a \(\sigma \)-locally finite, open refinement of \(Z' \) and hence of \(Z' \). Thus every open covering of \(X \) of cardinality \(\leq \mathfrak{m} \) has a \(\sigma \)-locally finite open refinement. Also, \(X \) is a countably paracompact. Therefore \(X \) is \(\mathfrak{m} \)-paracompact (\[3\], theorem 5).

Corollary Every normal space which is either semi-metric or developable or Moore, and is \(\mathfrak{m} \)-paracompact in a discrete peripheral sense, is \(\mathfrak{m} \)-paracompact.

Proof. Every semi-metric, or developable, or Moore space is subparacompact and hence the result follows from theorem 5.

Institute of Advanced Studies,
Meerut University, Meerut
and
Maitreyi College, University of Delhi
India
REFERENCES

