Kyungpook Math J. Volume 18, Number 2 December, 1978

ON REFLECTIVE SUBCATEGORIES

By Cho, Yong-Seung

Let α be a given full subcategory of \mathscr{C} . Under what conditions does there exist a smallest, replete, reflective subcategory α^* of \mathscr{C} for which α^* contains \mathcal{O} ? The answer to this question is unknown. Even if \mathcal{C} is the category of uniform spaces and uniform maps, it is an open question. J. F. Kennison answered to the above question partially, in case \mathscr{C} is a complete category with a well-founded bicategory structure and α is a full, replete and closed under the formation of products [1]. In this paper, the author could construct a smallest, replete, reflective subcategory \mathcal{O}^* of \mathscr{C} for which \mathcal{O}^* contains \mathcal{O} under other conditions except the fact that \mathcal{O} is full.

Throughout this paper, our definitions and notations are based on ([1], [5], [6], [10], [11]). The class of all epimorphisms of \mathscr{C} will be denoted by $E_{\mathscr{C}}$ and $M_{\mathscr{C}}$ the class of all monomorphisms of \mathscr{C} .

DEFINITION. Let \mathscr{C} be a category and let I and P be classes of morphisms

on \mathscr{C} . Then (I, P) is a bicategory structure on \mathscr{C} provided that:

B-1) Every isomorphism is in $I \cap P$.

B-2) I and P are closed under the composition of morphisms.

B-3) Every morphism f can be factored as $f=f_1f_0$ with $f_1 \in I$ and $f_0 \in P$. Moreover this factorization is unique to within an isomorphism in the sense that if f = gh and $g \in I$ and $h \in P$ then there exists an isomorphism e for which $ef_0 = h$ and $ge = f_1$. B-4) $P \subset E$ B-5) *I*⊂*M*

DEFINITION. (I, P) is a right bicategory structure on \mathscr{C} if it satisfies B-1, B-2, B-3 and B-4.

DEFINITION. Let \mathscr{C} be a category and let I and P be classes of morphisms of \mathscr{C} . Let $X \in \mathscr{C}$. Then A is an I-subobject of X if $I \cap Hom(A, X) \neq \phi$. The

category \mathscr{C} is *I-well-powered* if each $X \in \mathscr{C}$ has a representative set of *I*-sub-

144 Cho, Yong-Seung

objects. The terms *P*-quotient and *P*-co-well-powered are defined dually.

DEFINITION. A bicategory sutreture (I, P) on \mathcal{C} is *well-founded* if \mathcal{C} is I-well-powered and P-co-well-powered.

DEFINITION. A subcaterory α of \mathscr{C} is *replete* if $A \in \alpha$ and X isomorphic to

A imply $X \in \mathcal{O}$.

DEFINITION. Let α be a subcategory of \mathscr{C} . A morphism $f: X \longrightarrow Y$ is *injective* with respect to α if for all morphisms $g: X \longrightarrow A$ with $A \in \alpha$ there exists a morphism $h: Y \longrightarrow A$ such that hf = g. The class of all morphisms of \mathscr{C} which are injective with respect to α is denoted by $\Psi_{\mathscr{C}}(\alpha)$.

LEMMA 1. Let & be a complete category and let & be a full, reflective subcategory of &. Then & is a complete category.

DEFINITION 1. Let α be a subcategory of a complete category \mathscr{C} and let $L\alpha$ be the smallest limit closed subcategory of \mathscr{C} such that $\alpha \subset L\alpha$. Then $L\alpha$ is called the *limit closure of* α .

LEMMA 2. (Freyd-Isbell) Let C be a category with products. Let (I, P) be a right bicategory structure on C such that C is P-co-well-powered. Then C is P-reflective iff C is closed under the formation of products and I-subobjects.

PROOF. For a proof, see (1.2) in [1].

THEOREM 3. Let \mathscr{C} be complete and let (I_0, P_0) be a well-founded bicategory structure on \mathscr{C} , \mathscr{A} a full subcategory of \mathscr{C} , \mathscr{B} the full subcategory consisting of I_0 -subobjects of the limit closure $\mathcal{L}\mathscr{A}$ of \mathscr{A} , and $P = \Psi_{\mathscr{B}}(\mathcal{L}\mathscr{A}) \cap F_{\mathscr{B}}$. Assume that \mathscr{B} is P-co-well-powered. Let I be a class of morphisms such that (I, P) is a right bicategory structure on \mathscr{B} and let \mathscr{A}^* be the full subcct gory of all Isubobjects of members of $\mathcal{L}\mathscr{A}$. Then \mathscr{A}^* is the smallest, full, replete, reflective subcategory containing \mathscr{A} .

REMARK. Let (I_0, P_0) be a well-founded bicategory structure on \mathscr{C} and let: $I = \{g : g = fe \text{ and } e \in P \text{ implies } e \text{ is an isomorphism}\}$. Then I is unique and (I, P)is a right bicategory structure on \mathscr{B} under the hypothesis of Theorem 2.3[1].

PROOF OF THEOREM 3. According to Lemma 2.1 any full, reflective subcategory of the complete category \mathscr{C} is complete. Thus any full, reflective subcate-

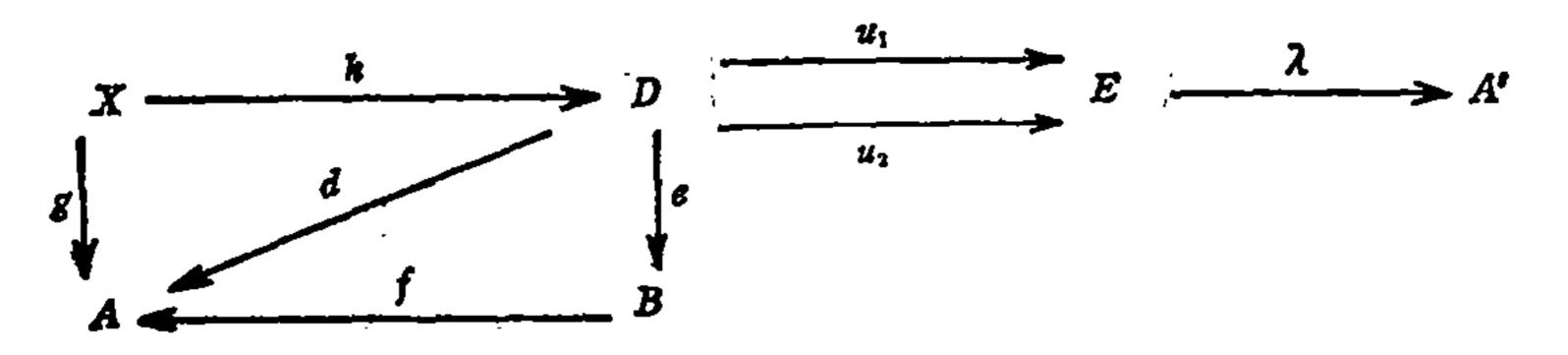
gory of \mathscr{C} containing α contains the limit closure $L\alpha$. It suffices to show that:

•

On Reflective Subcategories 145

 \mathscr{A}^* is the smallest, full, replete, reflective subcategory of \mathscr{C} for which $L\mathscr{A} \subset \mathscr{A}^*$. Also $L\mathscr{A}$ is replete and closed under the formation of products since $L\mathscr{A}$ is closed under limits. \mathscr{A}^* contains $L\mathscr{A}$ by its construction. By Lemma 2.2, \mathscr{A}^* is reflective in \mathscr{B} and \mathscr{B} is also reflective in \mathscr{C} . Thus \mathscr{A}^* is reflective in \mathscr{C} . Let \mathscr{X}^* be the full, replete, reflective subcatogory of \mathscr{C} containing \mathscr{A} . Then \mathscr{X} contains

Low. To prove $\mathscr{A}^* \subset \mathscr{X}$, let $x \in \mathscr{A}^*$ be given. Then there exists $g: X \longrightarrow A$ with $g \in I$ and $A \in L \mathscr{A}$. Let $h: X \longrightarrow D$ be a reflection map in \mathscr{X} . It suffices to show that h is an isomorphism. Since $A \in L \mathscr{A} \subset \mathscr{X}$ there exists $d: D \longrightarrow A$ such that g = dh. Let $e: D \longrightarrow B$ be a reflection map in \mathscr{B} then there exists unique morphism $f: P \longrightarrow A$ such that fe = d. Then $e \in P_0$. Indeed, let $\{f_\alpha: D \longrightarrow B_\alpha\}$ be a representative set of morphisms such that $B_\alpha \in \mathscr{B}$ and $f_\alpha \in P_0$. Let $f: D \longrightarrow B_\alpha$ be a representative set of morphisms such that $B_\alpha \in \mathscr{B}$ and $f_\alpha \in P_0$. Let $f: D \longrightarrow H_0$ is the required morphism e. Again since $feh = g \in I$, $eh \in I$.



In order to show $h \in E_{\mathcal{X} \cup \mathscr{B}}$, assume $u_1 h = u_2 h$ where $u_1, u_2: D \longrightarrow E$ and $E \in \mathcal{X} \cup \mathscr{B}$. If $E \in \mathcal{X}$, then $u_1 = u_2$ since h is a reflection map. If $Y \in \mathscr{B}$ there

exists $\lambda: E \longrightarrow A'$ with $\lambda \in I_0$ and $A' \in L \alpha$. Thus $\lambda u_1 h = \lambda u_2 h$. Since $A' \in \mathcal{X}$ and h is a reflection map and λ is a monomorphism, $u_1 = u_2$. Since e, h are reflection maps and $L \alpha \subset \mathcal{X}$ and $L \alpha \subset \mathcal{B}$, $eh \in \Psi_{\mathscr{B}}(L \alpha)$. Since e is an epimorphism and h is an epimorphism in $\mathcal{X} \cup \mathscr{B}$, eh is an epimorphism in \mathscr{B} . Thus $eh \in P$, and $eh \in I \cap P$. Hence eh is an isomorphism and $(eh)^{-1}(eh) = id$, $h(eh)^{-1}eh = h$, $h \in E_{\mathcal{X} \cup \mathcal{B}}$. It follows that h is an isomorphism.

COROLLARY 4. Let \mathscr{C} be a complete category with well-founded bicategory structure (I, P) and let \mathscr{C} be any full subcategory of \mathscr{C} . Let \mathscr{C}' be the smallest, full, replete subcategory which is closed under products containing \mathscr{C} . Let \mathscr{B}' be the full subcategory consisting of all I-subobjects of \mathscr{C}' . Let \mathscr{B} be the full subcategory consisting of all I-subobjects of $L\mathscr{C}$. Then $\mathscr{B} = \mathscr{B}'$.

146

Cho, Yong-Seung

REFERENCES

[1] J.F.Kennison, Full reflective subcategories and generalized covering spaces, Illinois J.Math., 12(1968), 353-365.

- [2] _____, A note on reflection maps, Illinois J. Math., 11(1967), 404-409.
- [3] _____, Reflective functors in general topology and elsewhere, Trans. Amer. Math. Soc., 118(1965), 303-315.
- [4] H. Herrlich and G. E. Strecker, *Coreflective subcategories*, Trans. Amer. Math. Soc., 157(1971), 205-226.
- [5] J. Isbell, Natural sums and abelianizing, Pacific J. Math., 14(1964), 1265-1281.
 [6] C. R. Ringel, Monofunctors as reflectors, Trans. Amer. Math. Soc., 161(1971), 293-306.
- [7] L.Skula, On a reflective subcategory of the category of all topological spaces, Trans. Amer. Math. Soc., (1969), 37-41,
- [8] M. Barr, Non-abelian torsion theories, Can. J. Math. Vol. XXV, 6(1973), 1224-1237.
- [9] S. MacLane, Categorical algebra, Bull. Amer. Math. Soc., 71(1965), 40-106.
- [10] B. Mitchell, Theory of categories, Academic Press, New York 1965.
- [11] I. Bucur and A. Deleanu, Introduction to the theory of categories and functors, John Wiley & Sons, New York 1968.

•