CHARACTERIZATIONS OF R-COMPACT ORDERED SPACES

By T.H. Choe and Y.S. Park

In [1], the following problem was raised. What are characterizations of R-compact ordered spaces and R-compact topological lattices? In this paper, we give a few external characterizations of them, which are analogous to real compact topological spaces [3]. For the terminology, we refer to [1,5].

THEOREM 1. Let (X, \leq, O) be a completely regular ordered space. Then X is an R-compact ordered space if and only if there does not exist a completely regular ordered space (X', \leq', O') satisfying the following two conditions.

- (i) There exists an iseomorphism e from X into X' such that $e(X) \neq \overline{e(X)} = X'$, where $\overline{e(X)}$ denotes the closure of e(X) in X'.
- (ii) For every continuous isotone $f: X \to R$, there is continuous isotone $\bar{f}: X' \to R$ such that $\bar{f} \circ e = f$, where R denotes the real line equipped with the usual order and topology.

LEMMA 2. Let A be a subspace of a topological partially ordered space $(X, \leq, 0)$. If every continuous isotone $g: A \rightarrow R$, such that either $g(a) \geq 1$ for all $a \in A$ or $g(a) \leq -1$ for all $a \in A$, has a continuous isotone extension on X (that is, there exists a continuous isotone $\bar{g}: X \rightarrow R$ with $\bar{g}|_{A=g}$), then every continuous isotone $f: A \rightarrow R$ has a continuous isotone extension on X.

LEMMA 3. Let A be a subspace of a topological partially ordered space (X, \leq, O) . If every continuous isotone $f: A \rightarrow R$ has a continuous isotone extension on X, then every continuous isotone $f: A \rightarrow R^{|S|}$ has a continuous isotone extension on X, where |S| denotes the cardinal number of a set S.

Moreover, if $\overline{A} = X$, then every continuous isotone $f: A \rightarrow B = \overline{B} \subset \mathbb{R}^{|\mathcal{E}|}$ has a continuous isotone extension on X.

In [2] and [4], they constructed an ordered compactification $\beta_1 X$ for a completely regular ordered space X as follows. Let $C_1 X$ be the set of continuous isotones of X into I, where I denotes the unit interval equipped with the usual order and topology.

Define $\beta_1: X \to I^{|C_1X|}$ by $\beta_1(x)(f) = f(x)$ for each $f \in C_1X$ and each $x \in X$.

Then β_1 is an iseomorphism from X into $I^{|C_1X|}$. Let $\beta_1X = \overline{\beta_1(X)}$; then β_1X is iseomorphic with Nachbin ordered compactification.

Combining the two lemmas, we have

THEOREM 4. Let $(X, \leq, 0)$ be a completely regular ordered space. Then X is R-compact ordered if and only if for every point $x_0 \in \beta_1 X - \beta_1(X)$ there exists a continuous anti-isotone $f: \beta_1 X \to [-1,1]$ such that either $f(x_0) = 0$ and f(x) > 0 for all $x \in \beta_1(X)$ or $f(x_0) = 0$ and f(x) < 0 for all $x \in \beta_1(X)$, where [-1,1] denotes the interval equipped with the usual order and topology.

REMARK 5. We note that Theorem 4 holds for $\beta_0 X$ [1]. By using the same lines as those in Theorem 1, we can obtain an external characterization of R-compact topological lattices as follows. A completely regular topological lattice L is an R-compact topological lattice if and only if there does not exist a completely regular topological lattice L' which satisfies the following two conditions: (i) there exists an iseomorphism $e: L \rightarrow e(L) \subset L'$ such that $e(L) \neq \overline{e(L)} = L'$; (ii) for every continuous homomorphism $f: L \rightarrow R$, there is a continuous homomorphism $f: L \rightarrow R$ such that $f \circ e = f$.

McMaster University
Hamilton, Ontario, Canada
and Kyungpook University
Taegu, Korea

REFERENCES

- [1] T.H. Choe and Y.H. Hong, Extensions of completely regular ordered spaces, Pacific J. Math. 66(1976) 37-48.
- [2] ____ and O.C. Garcia, Epireflective subcategories of partially ordered topological spaces, Kyungpook Math. J. Vol 13, No. 1 (1973) 97—107.
- [3] R. Engelking, Outline of General Topology, John Wiley & Sons, New York, 1968.
- [4] G. Hommel, Increasing Radon measures on locally compact ordered spaces, Rendiconti di Matematica, Series (VI), Vol.9, Fasc. 1 (1976) 85-117.
- [5] L. Nachbin, Topology and Order, Van Nostrand Mathematical Studies 4, Princeton, N.J., 1965.