Kyungpook Math. J. Volume 18, Number 2 December, 1978

ON T_0' SPACES

By Ivan L. Reilly.

In a recent note Lee [1] considered a separation property weaker than the T_1 property but independent of the T_0 property, and which he called T_0' . A topological space (X,T) is called a T_0 space if and only if for any point x not in a closed subset A of X there is an open set containing A but not x. The purpose of this note is to point out that these spaces were first introduced by Shanin [3] in 1943, and they have been considered by several authors usually under the name of R_0 spaces. The reader is referred to the paper by Naimpally [2] for a disucssion of the importance of this separation property. In order to show the equivalence of T_0' and R_0 spaces we use the following characterization of the R_0 property as a definition. A topological space (X, T) is R_0 if and only if for each open set G containing a point x, the closure of $\{x\}$, denoted by \overline{x} , is contained in G.

THEOREM. A topological space is T_0' if and only if it is R_0 .

PROOF. Let (X, T) be T_0' , G be open and $x \in G$. Then there is an open set U containing X-G but not x. Hence $x \in X-U \subset G$ and X-U is closed, so that $\overline{x} \subset X - U \subset G$.

Conversely, if (X,T) is R_0 , A is closed and $x \in A$ then x is contained in the open set X - A so that $\overline{x} \subset X - A$. Thus $U = X - \overline{x}$ is open and contains A but not x.

> University of Auckland, Auckland, New Zealand.

REFERENCES

- [1] S.M.Lee, On T₀' spaces, Kyungpook Math. J. 16 (1976), 61-62. [2] S. A. Naimpally, On R₀ topological spaces, Annales, Univ. Sci. Budapest 10 (1967), 53-54.
- [3] N.A.Shanin, On separation in topological spaces, Doklady URSS 38 (1943), 110-113.