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- c-CONTINUOUS FUNCTIONS AND COCOMPACT TOPOLOGIES

By David B. Gauld

1. Introduction

In [2] there is introduced the notion of a ¢-continuous function. The function
f 1 X—Y is c-continuous if whenever UCY 1is an open set with compact comple-
ment, f"l(U) is open. As noted in [1], f: X—Y is c-continuous if and only
if the same function is continuous after we retopologise ¥ with the topology
having as a basis |

{UCY| U is open and ¥ —U is compact}.

In this note, we study the operator which changes the topology in this way,
and show that many of the properties described in [2] and [3] fit into a broader
context.

It would seem that the greatest use for ¢-continuous functions may be theorems
of the sort “ec-continuous—>continuous” since we have the obvious characterisation
that f : X——Y 1is c-continuous iff ful(C) 1S closed whenever C is a closed com-
pact subset of Y. Thus in the presence of a “c-continuous=continuous” theorem,
we need onlv apply the “inverse image of a closed set is closed” criterion to
compacta to deduce continuity of a function. |

Below we show that theorems of the sort “c-continuous=continuous” i1n which
there are no restrictions on the domain are usually corollaries of theorems
involving a retopologising of the range.

2. The cocompactness operator

Let 7 be a topology on a set X. Define ¢(t), the cocompact topology, on X by
c(t)={pU{0€r| X—-0 is compact in t}.
It is easily verified that ¢(7) 1s a topology on X.
The basic relation between the cocompactness operator and c-continuous func-
tions is the following, which 1s theorem 1 of ([1].

THEOREM 1. f: X—> (Y, 1) is c-continuous if and only if
o i1 X— (Y, ¢(1)) is continuous.

In this theorem, the topology on X remains unchanged so is unspecified.
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THBEOREM 2. Cocompact topologies are compact.

PROQF. Let 7 be a topology on X and let ¢Cc(z) be a cover of X. Choose
QOSo with O#¢. Then X—0 is compact in 7, so finitely many members of o

cover X —0. Hence finitely many members of ¢ cover X; thus ¢(7) is compact.

CCROLLARY 3. Let t be a topology. Then c(t) =t if and only if © is a compact
topology.

PROOF. One implication follows from theorem 2 and the other is trivial.

The basic properties of c-continuous functions described in §2 of [2] are
immediate consequences of theorem 1 and the corresponding properties of con-
tinuous functions. The existence of example 3 of [2] should not be surprising.

A number of theorems involving c-continuity, particularly in [3], involve an
interplay between the cocompactness operator and a space-constructing process.
“This process might be restriction (considered in §3), the taking of a product
(considered in §4) or the taking of a quotient (considered in §5). We find
that there is a metatheorem which tells us that if P is the process and ¢P(7)
 Pc(t), then c-continuity of a function f whose range is topologised by z
guarantees c-continuity of the function P(f). Thus, for example, theorem 6
tells us that if A is a subset of the Hausdorff space (X, 7) then ¢(z]A)Cc(7)]|A:
in this case the process P is restriction of a topology to A. We are able to
deduce that if f:Y—X is a c-continuous function where X is Hausdorff and
ACX is such that fF(Y)CA, then the function f : Y—A is c¢c-continuous, which
15 a generalisation of theorem 2.13 of [3].

3. The behaviour of the cocompactness eperator under restrictions

Example 2.12 of [3] shows that in general we cannot restrict the range of a
¢-continuous function and still have a c-continuous function. In terms of the
cocompactness operator, this example tells us that 1n general it is false that
c(7|A)Cc(z)| A when A is a subset of X. The reverse inclusion is also false in
general, even if 7 is a Hausdorff topology.

EXAMPLE 4. Let X=1[0.1], A=(0,1) with 7 the usual topology on X. Then
(1/2, 1)&r=c(t) by corollary 3, so that (1/2, 1)&c(t)|A. However A—(1/2, 1)
=(0, 1/2] is not compact in 7|4, so (1/2, 1&c(t|A).

Thus, in general, there is no connection between the compact topology c(7]A)
and the topology c¢(7)|A. However, under certain conditions there is a connection.
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THEOREM 5. Let A be a closed subselt of the topological space (X,t). Then
(1| A) =c(7) | A.

PROOF. Suppose O&c(tlA). Then O&t|A and A—0 is compact in 7|4, hence
'In 7. Since O€7|A4,dP&t with PYA=0. Since A is closed under 7, X—AET so
PUX—-A)ET. But X—[PUX—-A4)]=A-P=A-0,

‘which is compact in 7, so that PU(X —-A)&c(r). Since [PUX-A)]NA=0,
'we have that O&c(7)|A4, so c(t|A)Cc()|A.
Conversely suppose O&c(1)|A. Then IP&c(t) with O=PN A.
Since PEc(t), X —P is compact under 7, so that A—O=A—P, being a closed

-subset of the compact set X—P, is compact in 7, hence in 7| A. Further O€7| 4,
s0 O€c(t|4), and so ¢(z)|ACc(z|A4).

Theorem 2.14 of [3] is an immediate consequence of theorem 5.

THEOREM 6. Let A be any subset of X and let v be a Hausdorff topology on
X. Then c(t|A) Cc(t)|A.

PROOF. Suppose O&c(r|A). Then O<t|A and A—0 is compact in 7|4, hence
in 7, so is closed in 7. Thus X—(4—-0)&1, so X—(A—-0)&c(t). But
[X—-—(A—-0)INA=0. Thus O&c(t)]|A.

‘Theorem 2.13 of [3] 1s an immediate consequence of theorem 6.

‘"Theorem 5 of [2] is a consequence of theorem 6, theorem 1 and corollary 3.

4. Cocompactness and products

Let {z,} be a family of topologies and Iz denote their product. Then [Tc(z )
*‘C(:(I'I'ra), for let I"[O':r be a subbasic open set of [Te(z ), i.e. O ,=X,, where X, is

the underlying set, unless a=g8, and O4&74 has compact complement. Then
[10 117, and [1X,— 110, =T1(X_— O,) is compact, being the product of com-

‘pacta. Hence 10, &c(Il7,), and so [Te(z,)Cc(Iz ).
In general the reverse inclusion is false, cf example 2.2 of [3]. However we
do have the following extension of theorem 2.1 of [3].

THEOREM 7. Let {t } be a collection of locally compact Hausdorff topologies.
Then c(I17,) =Tle(z,).
PROOF. By the above comments we need to show that ¢(I1z, )CIIc(z,). Sup-
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pose x&0&c(T1r, ). It suffices to find U &7, so that U =X, for all But finitely
many indices o, X, —U, is compact for all « and x&€[1U,CO.
Now da;---,«, and O, €7, so that .
n 1
x= Nz (0, )CO,
=1 ‘

where 7g: [1X,—X g denotes the projection.

For each y&X—0, choose sets K and L, as follows: for some 7, yEn;I(O pr

SO ¥, 7%,. Since X is locally compact and Hausdorff, y, has a closed

compact neighbourhood K y in X o for which xai$K . Let Lyzzr; I(Ify).
Then L, 1s a neighbourhood of y and x$Ly.

Now {IntLyl y&X—0} is an open cover of the compact set X—0. Let {Lyjlz“
=1,---,/} be a cover of X—0. |

For each o, let K a=U{K y.—IK jiCXa,}. This is a finite union of closed com-
pacta, so for each o, K is a closed compact set. Furthermore, K _ =¢ for all
but finitely many indices a. Let U —=X,—K, ThenU &c(zr,) and U, #X, for
only finitely many indices . Further, x,&€U,. Thus x€[1U _&O.

9. Cocompactness and quotients

Let 7 be a topology and ~ an equivalence relation on a set X. We consider in
this section the relationship between c(z/~) and c(z)/~.

THEOREM 8. Let T be a topology and ~ an equivalence relaiion on the same
set. Then c(t)/~C c(t/~).

PROOF. Suppose the set is X. Let 7 : X— X/~ denote the canonical projec-
tion, i.e. w(x) is the equivalence class of x under ~. Recall that the topology
7/~ 1s defined on X/~ by ACX/~ is (t/~)-open if and only if n'_ll(A)E?:. We
have the following:

Acc(t)/~
e B ON=T1CD
Y — :r—l(A)Er and X —:r_l(A) is T-compact.
— A&t/~ and (X/~)—A 1s (t/~)-compact.

Compactness of (X/~)—A follows from compactness of X —771(4) and the
equation (.X/"”>—A=TI(X—?IH1(A)). Thus A€Sc(t/~), so ¢(t)/~C c(z/~).



c-Continuous Functions and Cocompact Topologies. 155

 The reverse inclugion, “which is what is needed for the metatheorem discussed
in 2, is false in general. To obtain the reverse -i'in'cli:ls:ion; we need to be
able to reverse the last implication in the proof  of theorem 8, i.e. show
that if (X/~)—A is compact then so is :r_—-l((X/w)—A):'X ——rr"l(fl). If 7 were
a proper map then we would be able to deduce this. However, even if 7 were
at most two-to-one, we still cannot deduce: that 7 is proper as the following
example shows.

. EXAMPLE 9. Let X=(-1,-1), 7 the usual topology and let ~ be the: equiv-
alence relation generated by ¢~¢+1 for ¢&(—1,0). Then (X/~, t/~)is just the
circle, so is compact. However X itself is not compact, so the canonical projec-
tion is not proper. |

This example also shows that, in general, ¢(t)/~ and ¢(z/~) are not eqﬁaL
As already noted, 7/~, and hence c(t/~), is just the usual topology on the
circle. However, every non-empty ¢(7)-open set must contain {{&(—1, 1)| It\>_7'}
for some 7&(0,1). Thus every mnon-empty (¢c(7)/~)-open set must contain a
deleted neighbourhood of O X/~ in the usual topology. Thus in this case c¢(t/~)
& c(t)/~. | o R | |

6. Connections with sequences

Let T be a topology on a set X, let (x,) be a Séquence in X and zELX. Say
that (x,) converges to x in T and. write xﬁ-—Lx if Vr-neighbourhood N of z,
1 a natural number 7, so that whenever z=n, x,EN.,

THEOREM 10. Let © be a topéZogy on X in which cc)mpdcz‘ézr are closed and let

(x,) be a sequence in X converging to x in t. If yEX and :n:?:—(iy then x=y.

PROOF. Suppose y&X and x#y. Now {y} is compact, therefore closed in ,
so X—{y} is a t-neighbourhood of x. Hence 3x, so that Ye=>n, x,&X— {y}. Let

K={x}Ulx,|n=ng}.
Then K is compact, hence closed, in 7. Thus X~—~K&c(r). But then X—K
is a ¢(z)-neighbourhood of y containing none of the tail of the sequence (x,).
Thus (x,) cannot converge to'y in ¢(7).

COROQOLLARY 11. If all compacta in a space are closed, then no sequence Ccon-

verges to more than one point.

PROOF. If xn—Lx then xnﬂx, so the result follows froni theorem 10.
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Theorem 2.9. of [3] is another corollary of theorem 10 :in fact the space ¥
need not be Hausdorff: instead we require only that compacta be closed. If ¢
denotes the topology on Y and (x,) is a sequence in X converging to pEX,

then c-continuity of f tells us that f(z )% f(p). If also f(x )~y then by

theorem 10, y=r(p).
The following example shows that the closedness of compacta under 7 does

not in general imply uniqueness of limits of sequences in ¢(7).

EXAMPLE 12. Let X=R, tv=usual topology. Then 7 is Hausdorff so compacta
are closed. The sequence () coverges to x in ¢(t) Vx&R, for if &R and
x&E0&c(t), then in 7, R—O0 is compact, hence bounded. Thus d#,so that Vz

=>n, n&0. Thus 22y,

7. Conclusions

The above results suggest that many theorems involving c-continuous functions

in which there are no restrictions on the domain are really theorems involving
a change in the topology on the range space. Loosely speaking, we might say

that the wrong topology has been imposed on the range. However, as indicated
in the introduction, it might be desirable in a particular instance to impose this
“wrong” topology.

Similar remarks can also be made about several other versions of non-continuous

functions, for example, c¢*-continuous functions studied in [3] and [4] (cf
theorem 3.1 of [3]), and almost-continuous functions studied in [5].
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