Kyungpook Math. J. Volume 18, Number 2 December, 1978

DENSIFYING MAPPINGS AND THEIR FIXED POINTS

By Sucharita Ranganathan and V.K.Gupta

1. Introduction

Let A be a bounded subset of a metric space (X, d). Kuratowski [3] introduced the concept of $\alpha(A)$, the measure of non-compactness of A. $\alpha(A)$ denotes the infimum of all $\varepsilon > 0$ such that A admits a finite covering consisting of subsets with diameter $<\varepsilon$.

The following properties of α can be easily verified. For proofs, one can refer to Darbo [1] and Nussbaum [4].

(i) $0 \leq \alpha(A) \leq \delta(A)$ where $\delta(A)$ is the diameter of A,

(ii) $A \subset B \Rightarrow \alpha(A) \leq \alpha(B)$,

(iii) $\alpha(A) = \alpha(\overline{A})$ where \overline{A} is the closure of A,

(iv) $\alpha(A \cup B) = \max \{\alpha(A), \alpha(B)\},\$

(v) $\alpha(A) = 0 \iff A$ is pre-compact (totally bounded). Further, if (X, d) is complete, $\alpha(A) = 0 = \alpha(\overline{A}) \Rightarrow \overline{A}$ is compact.

 \sim

2. Furi and Vignoli [2] introduced the following two definitions.

DEFINITION 1. A continuous mapping T from a metric space (X, d) to itself is said to be *densifying* if for every bounded subset A of X with $\alpha(A) > 0$, we have $\alpha(T(A)) < \alpha(A)$.

Contractive mappings and completely continuous mappings are densifying.

DEFINITION 2. Let F be a real valued lower semi continuous function defined on $X \times X$. The mapping $T: X \rightarrow X$ is said to be weakly F-contractive if and only if

F(Tx, Ty) < F(x, y) for all $x, y \in X$, $x \neq y$.

When F is the distance function d, we say T is weakly contractive. They have proved the following:

THEOREM A. Let T be a densifying and weakly F-contractive mapping defined from a complete metric space (X,d) to itself. If for some $x_0 \in X$, the sequence of iterates starting from x_0 is bounded, then T has a unique fixed point in X.

Sucharita Ranganathan and V.K.Gupta

184

3. We prove a similar result which yields a unique common fixed point for a pair of densifying mappings. We first have the following

LEMMA. T_1 and T_2 are two densifying mappings from a metric space (X, d) to itself if and only if for every pair of bounded subsets A and B of X we have (3.1) $\alpha(T_1(A) \cup T_2(B)) < \alpha(A \cup B)$ whenever $\alpha(A \cup B) > 0$.

PROOF. Suppose condition (3.1) holds. Letting $B = \phi$ we obtain that $\alpha(T_1(A))$

 $\langle \alpha(A) \text{ whenever } \alpha(A) \rangle 0$, i.e. T_1 is densifying. Similarly T_2 is also densifying. Conversely, suppose T_1 and T_2 are densifying. Let $\alpha(A \cup B) \rangle 0$, i.e. Max $\{\alpha(A), \alpha(B)\} \rangle 0$. Three cases arise. If $\alpha(A)$ and $\alpha(B)$ are $\rangle 0$, then $\alpha(T_1(A)) \langle \alpha(A) \rangle \alpha(A)$ and $\alpha(T_2(B)) \langle \alpha(B) \rangle \langle \alpha(A \cup B) \rangle$. Hence max $\{\alpha(T_1(A)), \alpha(T_2(B))\} \langle \max\{\alpha(A), \alpha(B)\}$, i.e. $\alpha(T_1(A) \cup T_2(B)) \langle \alpha(A \cup B) \rangle$. If $\alpha(A) \rangle 0$ and $\alpha(B) = 0$, then $\alpha(T_1(A)) \langle \alpha(A) \rangle$; and $\alpha(B) = 0$ implies B is totally bounded. The continuous image $T_2(B)$ is also totally bounded and $\alpha(T_2(B)) = 0$. Hence $\alpha(T_1(A) \cup T_2(B)) = \max \langle \alpha(T_1(A)), \alpha(T_2(B)) \rangle = \max \langle \alpha(T_1(A)), \alpha(T_2(B)) \rangle = \alpha(T_1(A)) \langle \alpha(A) \rangle \langle \alpha(A \cup B) \rangle$, i.e. $\alpha(T_1(A) \cup T_2(B)) \langle \alpha(A \cup B) \rangle$. Similarly this result again follows if $\alpha(A) = 0$ and $\alpha(B) \geq 0$. Hence the lemma.

The following definition was introduced in [5].

DEFINITION 3. Let $S = \{T_1, T_2\}$ be a pair of self mappings of a metric space (X, d) into itself. For $x_0 \in X$, the sequence $J_S(x_0) = \{x_0, T_1x_0, T_2T_1x_0, T_1T_2T_1x_0, \cdots\}$ is called *the joint sequence of iterates of S at x_0*.

THEOREM 1. Let $S = \{T_1, T_2\}$ be a pair of commutative densifying mappings defined on a complete metric space (X, d) such that T_1T_2 is weakly F-contractive. If for some $x_0 \in X$ the joint sequence of iterates $J_S(x_0)$ of S at x_0 is bounded, then T_1 and T_2 have a unique common fixed point in X.

PROOF. Let $M = J_s(x_0) = \{x_0, T_1x_0, T_2T_1x_0, \cdots\}$. Denote $M_1 = \{x_0, T_2T_1x_0, T_2T_1T_2T_1, x_0, \cdots\}$ and $M_2 = \{T_1x_0, T_1T_2T_1x_0, \cdots\}$. Such that $M = M_1 \cup M_2$. Since $T_1(M_1) = M_2$ and $T_2(M_2) = M_1 \setminus \{x_0\}$ $M = T_1(M_1) \cup T_2(M_2) \cup \{x_0\}$. Therefore $\alpha(M) = \alpha(T_1(M_1)) \cup T_2(M_2) \cup \{x_0\}$. Therefore $\alpha(M) = \alpha(T_1(M_1)) \cup T_2(M_2)$. If $\alpha(M) = \alpha(M_1 \cup M_2) > 0$ then we must have $\alpha(T_1(M_1) \cup T_2(M_2)) < \alpha(M_1 \cup M_2)$ which will give a contradiction. Hence $\alpha(M) = 0$, and by property (v) \overline{M} is compact. Consider the function $\phi: \overline{M} \longrightarrow R$ defined by $\phi(x) = F(x, T_1T_2x) T_1T_2$ being the composition of two continuous functions is continuous; and F being

Densifying Mappings and their Fixed Points 185

Hower semi continuous, ϕ will be lower semi-continuous on compact \overline{M} . So it has a minimum at some point $z \in \overline{M}$. Now, \overline{M} is invariant under T_1T_2 for T_1T_2 $(M) = T_1(T_2(\overline{M})) \subset T_1(\overline{T_2(M)}) \subset \overline{T_1(T_2(M))} \subset \overline{M}$ since M is invariant under T_1T_2 Hence $T_1T_2(z) \in \overline{M}$. If $z \neq T_1T_2(z)$, $\phi(T_1T_2(z)) = F(T_1T_2(z), T_1T_2T_1T_2(z))$ $< F(z, T_1T_2)z) = \phi(z)$. This contradicts the definition of z; hence $z = T_1T_2(z)$. z is the unique fixed point of T_1T_2 ; for if w is another fixed point, $F(T_1T_2(z), z)$

 $T_1T_2(w) < F(z, w)$, i.e. F(z, w) < F(z, w) which is not possible. Further, $z = T_1T_2(z)$ implies $T_1(z) = T_1T_1T_2(z) = T_1T_1T_2(z)$, i.e. $T_1(z)$ is a fixed point of T_1T_2 . By the uniqueness of z, $T_1z=z$. Similarly z=T(z). Hence z is the unique common fixed point of T_1 and T_2 . This proves the theorem.

COROLLARY (i). Let $S = \{T_1, T_2\}$ be a pair of commutative densifying self mappings on a bounded complete metric space (X,d), such that T_1T_2 is weakly contractive. Then there exists a unique common fixed point for T_1 and T_2 .

COROLLARY (ii). Let X be a bounded complete metric space and let $S = \{T_1, T_2\}$ be a pair of commutative, completely continuous self mappings of X such that T_1T_2 is weakly F-contractive. Then there exists a unique common fixed point for T_1 and T_2 .

REMARKS. (i) The theorem can be generalized by replacing T_1 and T_2 by T_1^p

and T_2^{q} , for any two positive integers p and q. This is so, since the unique common fixed point of T_1^{p} and T_2^{q} will also be the unique common fixed point of T_1 and T_2^{r} . ([7])

(ii) For the validity of this theorem, the definition of weak F-contractivity for a mapping T may be modified in any way so as to yield $F(Tx, T^2x) < F(x, Tx)$. For example, we may like Singh [6] take

$$F(Tx, Ty) < \frac{1}{3} \{F(x, Tx) + F(y, Ty) + F(x, y)\}$$

(iii) The theorem still holds if we merely assume that T_1T_2 is iteratively weakly F-contractive at all points of X, i.e. for every $x \in X$, there exists a positive integer n(x) such that

 $F((T_1T_2)^{n(x)} x, (T_1T_2)^{n(x)} y) \leq F(x, y) \forall x, y \in X, x \neq y.$ This definition was introduced by Thomas [8].

Sucharita Ranganathan and V.K.Gupta

4. In this last section we generalize the notion of densifying mappings and extend Theorem A.

DEFINITION 4. A mapping $T: X \longrightarrow X$ is said to be $(p; q_1, q_2, \dots, q_m)$ densifying if for $A \subset X$.

(4.1) T^{p} is continuous and (4.2) $\alpha(T^{p}(A)) < \sum_{i=1}^{m} a_{i} \alpha(T^{q_{i}}(A))$

186

$$j=1$$

whenever $\sum_{j=1}^{m} a_j$ ($T^{q_j}(A)$) is finite and >0, where p, q_1, q_2, \dots, q_m are all non-

negative integers and the a_j 's are non-negative reals such that $\sum_{j=1}^{m} a_j = 1$.

THEOREM 2. Let $T: (X, d) \longrightarrow (X, d)$ be a $(p; q_1, q_2, \dots, q_m)$ densifying mapping defined on a complete metric space (X, d) such that T^p is weakly F-contractive. If for some $x_0 \in X$, the sequence of iterates $\{x_n\}$ is bounded, then T has a unique fixed point in X.

PROOF. Let $A = \bigcup_{n=0}^{\infty} \{x_n\}$ where $x_n = T$ x_{n-1} , $n = 1, 2, \cdots$. Now, $T^p(A)$ and $T^{q_j}(A)$, for $j = 1, 2, \cdots, m$, all differ from A only by a finite number of terms; hence $\alpha(A) = \alpha(T^p(A)) = \alpha(T^{q_j}(A)).$ If $\sum_{j=1}^{m} a_j \alpha(T^{q_j})(A)$ is finite and >0 then by (4.2)

$$\alpha(A) < \alpha(A) \left\{ \sum_{j=1}^{m} a_j \right\} = \alpha(A)$$

which is not possible. So we must have $\sum_{j=1}^{m} a_j \alpha(T^{q_j}(A)) = 0$. This implies that each term in the summation is independently. Since all the a_j 's cannot be zero, we have $\alpha(T^{q_j}(A)) = 0$ at least one j, i.e. $\alpha(T^p(A)) = 0$. Therefore $\overline{T^p(A)}$ is compact, since X is complete. Consider the real valued function $\phi: \overline{T^p(A)} \longrightarrow R$ defined by $\phi(x) = F(x, T^p x)$. ϕ being the composition of a continuous and a lower semi-continuous function is itself lower semi-continuous and attains a minimum at a point $z \in \overline{T^p(A)}$. The continuity of T^p gives. $T^p(\overline{T^p(A)}) \subset \overline{T^p(T^p(A))} = \overline{T^{2p}(A)} \subset \overline{T^p(A)}$, i.e. $T^p(z) \in \overline{T^p(A)}$. If $z \neq T^p(z)$, $\phi(T^p(z)) =$ $F(T^p(z), T^{2p}(z)) < F(z, T^p(z)) = \phi(z)$. This contradicts the definition of z; hence $z = T^p(z)$. The weak F-contractivity of T^p immediately gives that z is the

Densifying Mappings and their Fixed Points 187

unique fixed point of T^{p} . Also $T(z) = T(T^{p}(z)) = T^{p}(Tz)$. Hence z = T(z) by the uniqueness of z, i.e. z is the unique fixed point of T. Thus proves the theorem.

REMARKS. (i) If T is a (p;q) densifying mapping, condition (4.2) would reduce to $\alpha(T^{p}(A)) < \alpha(T^{q}(A))$.

(ii) If T is a (p:0) densifying mapping then we have $\alpha(T^p(A)) < \alpha(A)$, i.e. T^{p} is densifying. (see [8])

(iii) If T is a (1;0) densifying mapping, T will be densifying, and Theorem 2 will reduce to Theorem A.

> Banaras Hindu University Varanasi 221005 India.

REFERENCES

[1] Darbo, G., Puniti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Padova 24(1955) 84--92.

[2] Furi, M. and Vignoli, A., A fixed point theorem in complete metric spaces, Boll. U.M.I.S. N 2(1969(a)) 505-509.

[3] Kuratowski, C., Topologie, Warsaw. (1958).

[4] Nussbaum, R.D., The fixed point index and fixed point theorems for K-set contractions, Ph.D. Thesis (1969), University of Chicago, Illinois.

[5] Ranganathan, S., Srivastava, P. and Gupta, V.K., Joint sequence of iterates and

- common fixed points, Nanta Math 9(1976) No.1, 92-94.
- [6] Singh, S.P., Densifying mappings in metric spaces, Math. Student. 41(1973) No.4, 433-436.
- [7] Srivastava, P. and Gupta, V.K., A note on common fixed points, Yokohama Math. J. 19(1971) 91-95.
- [8] Thomas, J.W., A note on the common fixed point theorem due to Furi and Vignoli, Boll. U.M.I.S. IV 4(1971) 45-46.